Spaces:
Runtime error
Runtime error
import os | |
import re | |
import math | |
import json | |
import argparse | |
import warnings | |
import traceback | |
from tqdm import tqdm | |
from torch.utils.data import Dataset, DataLoader | |
import sys | |
sys.path.append('./') | |
from videollama2 import model_init, mm_infer | |
from videollama2.utils import disable_torch_init | |
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
class EgoschemaDataset(Dataset): | |
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
def __init__(self, data_folder, data_list, processor): | |
self.data_folder = data_folder | |
self.data_list = data_list | |
self.processor = processor | |
def __len__(self): | |
return len(self.data_list) | |
def __getitem__(self, idx): | |
line = self.data_list[idx] | |
q_uid = line['q_uid'] | |
for fmt in self.video_formats: # Added this line | |
temp_path = os.path.join(self.data_folder, f"{q_uid}{fmt}") | |
if os.path.exists(temp_path): | |
video_path = temp_path | |
break | |
video_tensor = self.processor(video_path) | |
question = line['question'] | |
a0 = line['option 0'] | |
a1 = line['option 1'] | |
a2 = line['option 2'] | |
a3 = line['option 3'] | |
a4 = line['option 4'] | |
axs = [a0, a1, a2, a3, a4] | |
ops = ['(A)', '(B)', '(C)', '(D)', '(E)'] | |
instruct = f'Select the best answer to the following multiple-choice question based on the video.\n{question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option. The best answer is: ' | |
return { | |
'q_uid': q_uid, | |
'video': video_tensor, | |
'instruct': instruct, | |
} | |
def build_egoschema_eval(args, processor): | |
questions = json.load(open(args.question_file, "r")) | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
dataset = EgoschemaDataset(args.video_folder, questions, processor) | |
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) | |
return dataloader | |
def egoschema_dump(ans_file, line, outputs): | |
for idx, output in enumerate(outputs): | |
q_uid = line['q_uid'][idx] | |
instruct = line['instruct'][idx] | |
letters = ['A', 'B', 'C', 'D', 'E'] | |
output = output.replace('answer', '') | |
output = output.replace('Answer', '') | |
pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output) | |
try: | |
assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(line['q_uid'], instruct, output) | |
pred_answer = pred_answer[0].strip() | |
pred_answer = pred_answer.strip('()') | |
pred_idx = letters.index(pred_answer) | |
except: | |
traceback.print_exc() | |
pred_idx = 2 | |
ans_file.write(f'{q_uid}, {pred_idx}\n') | |
def run_inference(args): | |
disable_torch_init() | |
model, processor, tokenizer = model_init(args.model_path) | |
answer_file = os.path.expanduser(args.answer_file) | |
os.makedirs(os.path.dirname(answer_file), exist_ok=True) | |
ans_file = open(answer_file, "w") | |
val_loader = build_egoschema_eval(args, processor['video']) | |
# Iterate over each sample in the ground truth file | |
for i, line in enumerate(tqdm(val_loader)): | |
video_tensor = line['video'][0] | |
instruct = line['instruct'][0] | |
try: | |
pred = mm_infer( | |
video_tensor, | |
instruct, | |
model=model, | |
tokenizer=tokenizer, | |
modal='video', | |
do_sample=False, | |
) | |
except: | |
traceback.print_exc() | |
pred = 'C' | |
egoschema_dump(ans_file, line, [pred]) | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.') | |
parser.add_argument('--model-path', help='', required=True) | |
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) | |
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) | |
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
parser.add_argument("--batch-size", type=int, default=1) | |
parser.add_argument("--num-workers", type=int, default=8) | |
args = parser.parse_args() | |
run_inference(args) | |