File size: 7,743 Bytes
ec1b07b
639d21f
ec1b07b
 
 
e790df8
88872fd
2538f72
 
24acc43
f06be5d
230d96d
98a5283
 
2538f72
88872fd
2c6f8d9
 
ce7387d
88872fd
 
cdc9e59
88872fd
cdc9e59
27f2401
86f2a58
230d96d
df58f18
230d96d
 
3bd69bd
5028b6b
036616e
 
5028b6b
a22d2a6
 
 
2538f72
40262d1
0c0a0d1
 
83acc38
fff489d
 
 
 
 
 
 
 
 
 
f08b01b
 
 
 
 
 
 
2173f78
bba2ec8
f08b01b
 
0282890
 
 
 
 
 
 
 
98a5283
0282890
 
 
 
 
 
 
 
 
 
98a5283
0282890
 
 
 
 
 
 
 
 
 
98a5283
0282890
 
 
 
 
 
 
 
 
 
98a5283
0282890
 
 
 
 
 
 
 
 
 
98a5283
0282890
 
 
 
98a5283
0282890
 
 
 
 
98a5283
0282890
 
 
 
88872fd
0282890
88872fd
0282890
 
 
88872fd
0282890
 
 
 
88872fd
0282890
88872fd
0282890
 
 
88872fd
0282890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f08b01b
0282890
 
 
 
40262d1
5fa0d18
 
04f335f
9be817f
5fa0d18
b7de1a2
9d7947a
b7de1a2
dc10b57
9951848
b7de1a2
750bbf8
5fa0d18
 
b7de1a2
9e680bf
1312508
c0e1900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# References:

# https://docs.crewai.com/introduction
# https://ai.google.dev/gemini-api/docs

import os
from crewai import Agent, Crew, Task
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.project import CrewBase, agent, crew, task
from google import genai
from openinference.instrumentation.crewai import CrewAIInstrumentor
from phoenix.otel import register
from tools.ai_tools import AITools
from tools.arithmetic_tools import ArithmeticTools
from typing import List
from utils import read_file_json, is_ext

## LLMs

MANAGER_MODEL      = "gpt-4.5-preview"
AGENT_MODEL        = "gpt-4.1-mini"

FINAL_ANSWER_MODEL = "gemini-2.5-pro-preview-03-25"

# LLM evaluation

PHOENIX_API_KEY = os.environ["PHOENIX_API_KEY"]

os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

tracer_provider = register(
    auto_instrument=True,
    project_name="gaia"
)

CrewAIInstrumentor().instrument(tracer_provider=tracer_provider)

@CrewBase
class GAIACrew():
    agents: List[BaseAgent]
    tasks: List[Task]

    @agent
    def web_search_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["web_search_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[AITools.web_search_tool],
            verbose=True
        )

    @agent
    def web_browser_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["web_browser_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=3,
            tools=[AITools.web_browser_tool],
            verbose=True
        )
    
    @agent
    def image_analysis_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["image_analysis_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[AITools.image_analysis_tool],
            verbose=True
        )

    @agent
    def audio_analysis_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["audio_analysis_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[AITools.audio_analysis_tool],
            verbose=True
        )

    @agent
    def video_analysis_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["video_analysis_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[AITools.video_analysis_tool],
            verbose=True
        )

    @agent
    def youtube_analysis_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["youtube_analysis_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[AITools.youtube_analysis_tool],
            verbose=True
        )

    @agent
    def document_analysis_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["document_analysis_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[AITools.document_analysis_tool],
            verbose=True
        )

    @agent
    def arithmetic_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["document_analysis_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=2,
            tools=[ArithmeticTools.add, ArithmeticTools.subtract, ArithmeticTools.multiply, ArithmeticTools.divide, ArithmeticTools.modulus],
            verbose=True
        )

    @agent
    def code_generation_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["code_generation_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=3,
            tools=[AITools.code_generation_tool],
            verbose=True
        )

    @agent
    def code_execution_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["code_execution_agent"],
            allow_delegation=False,
            llm=AGENT_MODEL,
            max_iter=3,
            tools=[AITools.code_execution_tool],
            verbose=True
        )

    @agent
    def manager_agent(self) -> Agent:
        return Agent(
            config=self.agents_config["manager_agent"],
            allow_delegation=True,
            llm=MANAGER_MODEL,
            max_iter=5,
            verbose=True
        )

    @task
    def manager_task(self) -> Task:
        return Task(
            config=self.tasks_config["manager_task"]
        )

    @crew
    def crew(self) -> Crew:
        return Crew(
            agents=self.agents,
            tasks=self.tasks,
            verbose=True
        )

def run_crew(question, file_path):
    final_question = question
    
    if file_path:
        if is_ext(file_path, ".csv") or is_ext(file_path, ".xls") or is_ext(file_path, ".xlsx") or is_ext(file_path, ".json") or is_ext(file_path, ".jsonl"):
            json_data = read_file_json(file_path)
            final_question = f"{question} JSON data:\n{json_data}."
        else:
            final_question = f"{question} File path: {file_path}."

    answer = GAIACrew().crew().kickoff(inputs={"question": final_question})
    final_answer = get_final_answer(FINAL_ANSWER_MODEL, question, str(answer))

    print(f"=> Initial question: {question}")
    print(f"=> Final question: {final_question}")
    print(f"=> Initial answer: {answer}")
    print(f"=> Final answer: {final_answer}")
    
    return final_answer

def get_final_answer(model, question, answer):
    prompt_template = """
        You are an expert question answering assistant. Given a question and an initial answer, your task is to provide the final answer.
        Your final answer must be a number and/or string OR as few words as possible OR a comma-separated list of numbers and/or strings.
        If you are asked for a number, don't use comma to write your number neither use units such as USD, $, percent, or % unless specified otherwise.
        If you are asked for a string, don't use articles, neither abbreviations (for example cities), and write the digits in plain text unless specified otherwise.
        If you are asked for a comma-separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
        If the final answer is a number, use a number not a word.
        If the final answer is a string, start with an uppercase character.
        If the final answer is a comma-separated list of numbers, use a space character after each comma.
        If the final answer is a comma-separated list of strings, use a space character after each comma and start with a lowercase character.
        Do not add any content to the final answer that is not in the initial answer.
        **Question:** """ + question + """
        
        **Initial answer:** """ + answer + """
        
        **Example 1:** What is the biggest city in California? Los Angeles
        **Example 2:** How many 'r's are in strawberry? 3
        **Example 3:** What is the opposite of black? White
        **Example 4:** What are the first 5 numbers in the Fibonacci sequence? 0, 1, 1, 2, 3
        **Example 5:** What is the opposite of bad, worse, worst? good, better, best
        
        **Final answer:** 
        """

    client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

    response = client.models.generate_content(
        model=model, 
        contents=[prompt_template]
    )
    
    return response.text