File size: 11,811 Bytes
6135411
 
2d5cae8
6135411
2d5cae8
 
6135411
2d5cae8
 
 
 
 
 
 
7d5cf4e
 
 
2d5cae8
7d5cf4e
 
f78768c
6135411
7d5cf4e
6135411
2d5cae8
6135411
 
 
 
2d5cae8
 
7d5cf4e
2d5cae8
 
 
 
b96f5ef
2d5cae8
 
 
7d5cf4e
2d5cae8
 
 
6135411
 
 
 
 
 
7d5cf4e
6135411
2d5cae8
 
6135411
 
 
 
2d5cae8
6135411
 
 
 
 
2d5cae8
6135411
2d5cae8
 
 
6135411
 
2d5cae8
6135411
2d5cae8
6135411
 
 
 
 
 
2d5cae8
7d5cf4e
2d5cae8
 
6135411
2d5cae8
 
6135411
 
 
 
 
2d5cae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6135411
2d5cae8
 
 
 
 
 
 
 
 
 
 
7d5cf4e
2d5cae8
7d5cf4e
2d5cae8
7d5cf4e
6135411
99e1168
 
 
2d5cae8
7d5cf4e
2d5cae8
 
 
 
 
 
 
 
 
 
 
 
7d5cf4e
2d5cae8
 
 
 
 
 
 
 
 
 
6135411
2d5cae8
7d5cf4e
2d5cae8
7d5cf4e
2d5cae8
 
7d5cf4e
 
2d5cae8
 
7d5cf4e
 
2d5cae8
 
6135411
2d5cae8
7d5cf4e
 
2d5cae8
 
 
 
 
 
7d5cf4e
2d5cae8
 
 
 
 
 
 
 
 
 
 
6135411
2d5cae8
 
 
 
 
 
 
7d5cf4e
2d5cae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6135411
415506c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d5cae8
 
 
 
 
 
 
 
 
 
 
7d5cf4e
 
415506c
 
edfbc7f
 
6135411
 
7d5cf4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import torch
import torch.nn as nn
from torchvision import transforms
from typing import Dict, Any
from PIL import Image
import open_clip
from transformers import (
    BioGptTokenizer,
    BioGptForCausalLM,
    AutoTokenizer,
    AutoModelForSeq2SeqLM
)
import gradio as gr
# NOTE: Ensure this library is installed on the Hugging Face Space
from IndicTransToolkit import IndicProcessor 
from huggingface_hub import hf_hub_download # New import for HF deployment

# --- 1. CONFIGURATION (Stage 1: Report Generation) ---
# NOTE: Update this REPO_ID to the actual Hugging Face repository where you upload your .pth files!
REPO_ID = "Robinhood135/biogptm1"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- MODEL/DECODING PARAMS ---
BIOMEDCLIP_MODEL_NAME = 'hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224'
CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
PREFIX_LENGTH = 10
PROMPT_TEXT = "You are a Radiologist.The chest image findings are:"

# --- BEST DECODING STRATEGY (Beam Search) ---
BEST_STRATEGY_PARAMS = {
    "num_beams": 4,
    "do_sample": False,
    "repetition_penalty": 1.2,
    "max_new_tokens": 100,
    "min_new_tokens": 10,
}

# --- 2. MODEL CLASS (Stage 1) - Kept the same ---
def freeze_module(module: nn.Module):
    for param in module.parameters(): param.requires_grad = False

class BiomedCLIPBioGPTGenerator(nn.Module):
    def __init__(self, tokenizer, model_name=BIOMEDCLIP_MODEL_NAME, prefix_length=PREFIX_LENGTH):
        super().__init__()
        self.tokenizer = tokenizer
        self.prefix_length = prefix_length
        self.clip_model, _, _ = open_clip.create_model_and_transforms(model_name)
        # Handle cases where image encoder is visual or a direct method
        self.image_encoder = self.clip_model.visual if hasattr(self.clip_model, 'visual') else self.clip_model.encode_image
        freeze_module(self.image_encoder)

        with torch.no_grad():
            dummy_features = self.image_encoder(torch.randn(1, 3, 224, 224))
            if isinstance(dummy_features, tuple): dummy_features = dummy_features[0]
            self.embed_dim = dummy_features.shape[-1]

        config = BioGptForCausalLM.from_pretrained('microsoft/biogpt').config
        self.biogpt = BioGptForCausalLM.from_pretrained('microsoft/biogpt', config=config)
        self.biogpt.resize_token_embeddings(len(self.tokenizer))
        self.gpt_hidden_dim = self.biogpt.config.hidden_size
        self.biogpt.config.pad_token_id = self.tokenizer.pad_token_id

        self.projection_head = nn.Sequential(
            nn.Linear(self.embed_dim, self.prefix_length * self.gpt_hidden_dim),
            nn.Tanh(),
            nn.Linear(self.prefix_length * self.gpt_hidden_dim, self.prefix_length * self.gpt_hidden_dim)
        )

    @torch.no_grad()
    def get_prefix_embeddings(self, images):
        clip_features = self.image_encoder(images).float()
        prefix_embeds = self.projection_head(clip_features)
        return prefix_embeds.view(-1, self.prefix_length, self.gpt_hidden_dim)

    def get_text_embeddings(self, input_ids):
        return self.biogpt.get_input_embeddings()(input_ids)


# --- 3. INFERENCE FUNCTION (Stage 1) - Kept the same ---
@torch.no_grad()
def generate_report(model, pil_image: Image.Image, method_params: Dict[str, Any]):
    model.eval()

    # 3.1 Apply image transformation
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=CLIP_MEAN, std=CLIP_STD)
    ])
    image_tensor = transform(pil_image.convert('RGB')).unsqueeze(0).to(device)

    # 3.2 Get prefix embeddings
    prefix_embeds = model.get_prefix_embeddings(image_tensor)

    # 3.3 Encode prompt text
    prompt_data = model.tokenizer(PROMPT_TEXT, return_tensors="pt").to(device)
    prompt_embeds = model.get_text_embeddings(prompt_data["input_ids"])
    combined_embeds = torch.cat([prefix_embeds, prompt_embeds], dim=1)

    prefix_att_mask = torch.ones(prefix_embeds.shape[:2], dtype=torch.long, device=device)
    combined_att_mask = torch.cat([prefix_att_mask, prompt_data["attention_mask"]], dim=1)

    # 3.4 Generation parameters
    generation_args = {
        "inputs_embeds": combined_embeds,
        "attention_mask": combined_att_mask,
        "pad_token_id": model.tokenizer.pad_token_id,
        "eos_token_id": model.tokenizer.eos_token_id,
        "use_cache": True,
    }
    generation_args.update(method_params)

    # 3.5 Generate
    generated_ids = model.biogpt.generate(**generation_args)

    # 3.6 Decode and clean
    full_text = model.tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    if full_text.startswith(PROMPT_TEXT):
        text = full_text[len(PROMPT_TEXT):].strip()
    else:
        text = full_text

    return text if text.strip() else "[BLANK/FAILED GENERATION]"


# --- 4. MODEL LOADING (Stage 1) - MODIFIED FOR HF HUB ---
def load_trained_generator():
    print(f"Loading Report Generator model from {REPO_ID}...")

    # Load from Hugging Face Hub
    try:
        clip_ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="biomedclipp.pth")
        gpt_ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="biogptt.pth")
        proj_ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="projectorr.pth")
    except Exception as e:
        raise FileNotFoundError(f"Failed to download one or more checkpoint files from {REPO_ID}. Error: {e}")

    # Initialize tokenizer
    base_tokenizer = BioGptTokenizer.from_pretrained('microsoft/biogpt')
    if base_tokenizer.pad_token is None:
        base_tokenizer.add_special_tokens({'pad_token': '[PAD]'})

    # Initialize model
    model = BiomedCLIPBioGPTGenerator(base_tokenizer).to(device)

    # Load CLIP encoder
    clip_checkpoint = torch.load(clip_ckpt_path, map_location=device)
    state_dict = clip_checkpoint.get('model_state_dict', clip_checkpoint.get('state_dict', clip_checkpoint))
    # Filter state dict for the visual encoder and clean keys
    visual_state = {k.replace('model.visual.', '').replace('visual.', ''): v for k, v in state_dict.items() if 'visual' in k}
    model.image_encoder.load_state_dict(visual_state, strict=False)

    # Load trained BioGPT and Projection weights
    model.biogpt.load_state_dict(torch.load(gpt_ckpt_path, map_location=device))
    model.projection_head.load_state_dict(torch.load(proj_ckpt_path, map_location=device))

    model.eval()
    print("✅ Report Generator loaded successfully.")
    return model


# --- 5. MODEL LOADING (Stage 2: Translation) - Kept the same ---
def load_translator():
    # IndicTrans2 models are typically loaded directly from their HF repos (ai4bharat/...)
    print("Loading Translation model (IndicTrans2)...")
    try:
        # IndicTransToolkit library is assumed to be installed
        ip = IndicProcessor(inference=True) 
        model_name = "ai4bharat/indictrans2-en-indic-dist-200M"
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        # Note: If memory is an issue on the Space, you might need to use a smaller model or lower precision.
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True).to(device) 
        print("✅ Translator loaded successfully.")
        return ip, tokenizer, model
    except Exception as e:
        print(f"Error loading translation model: {e}")
        # Return dummy values if loading fails to prevent crash
        return None, None, None 

# Load models globally
GENERATOR_MODEL = load_trained_generator()
IP, TRANS_TOKENIZER, TRANS_MODEL = load_translator()


# --- 6. TRANSLATION FUNCTION (Stage 2) - Kept the same ---
@torch.no_grad()
def translate_report(english_text: str, target_lang: str = "hin_Deva") -> str:
    if TRANS_MODEL is None or not english_text:
        return "[Translation Model Not Available or No Text to Translate]"

    # 6.1 Preprocessing
    batch = IP.preprocess_batch([english_text], src_lang="eng_Latn", tgt_lang=target_lang, visualize=False)
    batch = TRANS_TOKENIZER(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt").to(device)

    # 6.2 Generation
    outputs = TRANS_MODEL.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256, use_cache=False)

    # 6.3 Postprocessing
    outputs = TRANS_TOKENIZER.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    translated_text = IP.postprocess_batch(outputs, lang=target_lang)[0]

    return translated_text


# --- 7. GRADIO WRAPPER FUNCTION (Simplified) - Kept the same ---
def inference_wrapper(input_image: Image.Image):
    if input_image is None:
        return "Please upload a chest X-ray image.", "[No English Report]"

    # STAGE 1: GENERATE RAW ENGLISH REPORT
    try:
        raw_english_report = generate_report(GENERATOR_MODEL, input_image, BEST_STRATEGY_PARAMS)
    except Exception as e:
        raw_english_report = f"An error occurred during generation: {e}"
        return raw_english_report, "[Translation Skipped]"

    # STAGE 2: TRANSLATE RAW ENGLISH REPORT
    try:
        hindi_report = translate_report(raw_english_report, target_lang="hin_Deva")
    except Exception as e:
        hindi_report = f"[Translation failed: {e}]"

    return raw_english_report, hindi_report


# --- 8. GRADIO INTERFACE SETUP ---
if __name__ == "__main__":
    # Define example image filenames
    EXAMPLE_FILENAMES = [
        "001c3589-7aed3964-f06ba8d5-03882592-d77f222c.jpg",
        "004438db-4a5d6ab3-acc6c408-5dce0934-7d30b269.jpg",
        "0006f2ea-d44c6b5e-aeea6fd2-a974657c-90a39211.jpg",
        "0008ba07-4e43d6f4-fc692a96-c18a27a8-10eea0cd.jpg",
        "001526e1-0d0b8a2d-87e74f7e-72646210-c635fee4.jpg",
        "00438e51-4f75714b-943c8edd-6740491f-f8307602.jpg",
        "001c78df-8ce750bd-c100a8e0-2874ea0e-09cdbd4e.jpg",
        "000b9235-69b5b7e2-1ec32996-50f79b97-46f939cf.jpg",
        # "0041603e-059f400f-c509c746-0da5c413-ee889ec1.jpg",
        "001198e2-a2adcc23-7253eb78-0dcb5eaa-b10ed183.jpg",
        "0003fc7c-3dfce751-9ff36dc3-8fa4f6d9-0515ce50.jpg",
        "0018ff6b-8ad1196f-823030d0-1141b667-2a1a117a.jpg",
        "00068d26-8d583659-af7de1da-fc6c0476-d94aada1.jpg",
        "00196af8-50d17b31-b1b5a7be-da90b7e6-fd3a8004.jpg",
        "004017bd-6506697c-3ead0e70-548114b7-2af62447.jpg",
        "00059571-ade80b6c-7931ddb8-b486c6c1-1e543b22.jpg",
        "00419c98-6f4860a1-3dee986d-8e2ceadc-d2fd30ae.jpg",
        "000ffbff-3d93bcef-da8b17cd-fbcede53-51728df9.jpg",
        "0016e39b-d0cad5f2-eecb7ae8-4db8b8f2-0b366f1a.jpg",
        "00469c3d-4ebf8374-055428f7-d798daca-3e37d354.jpg",
        "0013ac79-5eea664c-7ef52c71-7e5a25f3-013715fc.jpg"
    ]
    
    # Create examples list with only image paths
    examples = [[os.path.join("examples", f)] for f in EXAMPLE_FILENAMES]

    # Interface components
    input_image = gr.Image(type="pil", label="Upload Chest X-ray Image")
    output_en = gr.Textbox(label="Generated Radiology Report (English)", lines=5)
    output_hi = gr.Textbox(label="Generated Radiology Report (Hindi/हिन्दी)", lines=5)

    # Gradio app setup
    app = gr.Interface(
        fn=inference_wrapper,
        inputs=input_image,
        outputs=[output_en, output_hi],
        title="🔬 Cascading BiomedCLIP-BioGPT & IndicTrans2 Report Generator",
        description="Upload a chest X-ray image to generate a radiology finding in English and automatically translate it to Hindi.",
        # allow_flagging="never",
        examples=examples,
        cache_examples=False
        # cache_examples=True
    )

    print("\nStarting Gradio interface...")
    app.launch() # Removed share=True for typical Hugging Face Space deployment