File size: 29,866 Bytes
55f847a
 
 
0b7e30c
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44b8c56
 
 
 
 
 
 
0b7e30c
6bf20bf
 
 
 
 
 
 
0b7e30c
 
 
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cde16
55f847a
 
 
 
 
 
 
d7cde16
55f847a
 
d7cde16
 
 
 
 
 
 
 
 
 
 
 
 
55f847a
d7cde16
55f847a
d7cde16
55f847a
d7cde16
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816d0d1
da70449
55f847a
 
 
 
816d0d1
55f847a
 
 
 
 
 
 
 
 
 
 
 
5092773
55f847a
 
5092773
 
 
55f847a
 
 
5092773
 
55f847a
 
5092773
 
 
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cde16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f847a
 
 
d7cde16
55f847a
 
 
 
 
d7cde16
 
 
 
 
 
 
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
d7cde16
 
 
 
 
 
1300b3d
d7cde16
 
 
2581e0d
d7cde16
 
 
 
55f847a
 
 
 
 
 
 
d7cde16
55f847a
d7cde16
 
55f847a
d7cde16
55f847a
 
 
d7cde16
55f847a
 
 
 
 
d7cde16
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855d150
55f847a
 
855d150
 
55f847a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816d0d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da70449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65e34db
55f847a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import os
import random
from datetime import datetime, timedelta
from flask import Flask, request, jsonify, make_response
from flask_cors import CORS
from flask_bcrypt import Bcrypt
from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity, JWTManager
import numpy as np
import tensorflow as tf
import joblib
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
from pymongo import MongoClient
from bson import ObjectId
import torch
import logging
import requests
import google.generativeai as genai
from dotenv import load_dotenv
load_dotenv()
# --- App Initialization ---
app = Flask(__name__)
# The new, more explicit configuration
CORS(app, resources={
    r"/api/*": {
        "origins": "*",  # Allow all origins
        "methods": ["GET", "POST", "PUT", "DELETE", "OPTIONS"],  # Allow these methods
        "headers": ["Content-Type", "Authorization"]  # Allow these headers
    }
})

@app.after_request
def add_cors_headers(response):
    response.headers['Access-Control-Allow-Origin'] = '*'
    response.headers['Access-Control-Allow-Headers'] = 'Content-Type,Authorization'
    response.headers['Access-Control-Allow-Methods'] = 'GET,PUT,POST,DELETE,OPTIONS'
    return response


# Allow requests from your React frontend

# GENERATE GEMINI RESPONSES --- Add this right after your imports and "load_dotenv()"  ---

# --- Configuration ---
# It's crucial to set a secret key for JWT.
# In production, use a long, random string stored in an environment variable.
app.config["JWT_SECRET_KEY"] = os.environ.get("JWT_SECRET_KEY")
app.config["JWT_ACCESS_TOKEN_EXPIRES"] = timedelta(hours=24)

bcrypt = Bcrypt(app)
jwt = JWTManager(app)
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)




try:
    GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
    genai.configure(api_key=GEMINI_API_KEY)
    logger.info("✅ Gemini API configured successfully.")
except Exception as e:
    logger.error(f"❌ Error configuring Gemini API: {e}")
    GEMINI_API_KEY = None

def generate_gemini_response(emotion, confidence, user_message, chat_history): # Add chat_history
    """
    Generates a supportive response from Gemini based on context.
    """
    if not GEMINI_API_KEY:
        return "I'm currently unable to process this request. Please try again later."

    system_prompt = f"""
    You are 'MindWell', a compassionate and supportive AI mental health companion. 

    **Your Strict Rules:**
    1. NEVER claim to be a human, a doctor, or a licensed therapist.
    2. NEVER diagnose any condition.
    3. Keep responses concise and gentle (1-3 sentences).
    4. Provide simple, actionable coping strategies or reflective questions.
    5. If the user's message implies crisis, your ONLY response is: "CRISIS_RESPONSE"

    ---
    **PREVIOUS CONVERSATION HISTORY (FOR CONTEXT):**
    {chat_history}
    ---

    **CURRENT INTERACTION:**
    - User's Detected Emotion (from this message): {emotion}
    - Confidence in Detection: {confidence:.2f}%
    - User's New Message: "{user_message}"

    Based on the previous history and the current interaction, generate a supportive and relevant response. If the history mentions a high stress score, acknowledge it gently.
    """
    # ... the rest of the function is the same

    try:
        model = genai.GenerativeModel('gemini-1.5-flash-latest') # A great, free-tier model
        response = model.generate_content(system_prompt)
        return response.text
    except Exception as e:
        logger.error(f"Error calling Gemini API: {e}")
        return "I'm having a little trouble thinking of a response right now. Could you try rephrasing?"


# ===================================================================================
# --- MODEL LOADING ---
# ===================================================================================

# --- 1. Load Stress Prediction Model & Scaler ---
try:
    stress_model = tf.keras.models.load_model("stress_model.h5")
    stress_scaler = joblib.load("scaler.pkl")
    logger.info("✅ Stress prediction model and scaler loaded successfully.")
except Exception as e:
    logger.error(f"❌ Error loading stress model or scaler: {e}")
    stress_model = None
    stress_scaler = None

# --- 2. Load Chatbot Emotion Model & Tokenizer ---
try:
    # Ensure you have the fine-tuned model files in a directory named 'fine_tuned_model'
    chatbot_model = DistilBertForSequenceClassification.from_pretrained("./fine_tuned_model")
    chatbot_tokenizer = DistilBertTokenizer.from_pretrained("./fine_tuned_model")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    chatbot_model.to(device)
    chatbot_model.eval()
    logger.info(f"✅ Chatbot model loaded successfully on {device}.")
except Exception as e:
    logger.error(f"❌ Error loading chatbot model: {e}")
    chatbot_model = None
    chatbot_tokenizer = None
    
# --- 3. Load Facial Emotion Detection Model ---
try:
    emotion_model_filename = 'emotion_classifier_rf_TUNED.joblib'
    facial_emotion_model = joblib.load(emotion_model_filename)
    # This dictionary maps the model's integer output to a human-readable emotion
    facial_emotion_labels = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}
    logger.info(f"✅ Facial emotion detection model loaded from: {emotion_model_filename}")
except Exception as e:
    logger.error(f"❌ Error loading facial emotion model: {e}")
    facial_emotion_model = None


# --- MongoDB Setup for Chat Logs ---
try:
    MONGO_URI = os.environ.get("MONGO_URI")
    client = MongoClient(MONGO_URI)
    db = client["mindcare_db"] # Using a new database name for clarity
    users_collection = db["users"]
    stress_logs_collection = db["stress_logs"]
    chat_logs_collection = db["chat_logs"] # You already had this
    cbt_records_collection = db["cbt_records"]
    meditations_collection = db["meditations"] 
    logger.info("✅ MongoDB connection established.")
except Exception as e:
    logger.error(f"❌ Error connecting to MongoDB: {e}")
    users_collection = None
    cbt_records_collection = None

# --- Chatbot Helper Data ---
# This label map is for the text-based emotion detection in the chatbot
text_emotion_label_map = {0: "positive", 1: "negative"} 

helplines = {
    "US": "1-800-273-8255 (National Suicide Prevention Lifeline)",
    "India": "9152987821 (iCall, India), +91-22-25521111 (Samaritans Mumbai)",
    "Global": "Find local helplines at www.iasp.info/resources/Crisis_Centres/"
}



suggestion_library = {
    "low": {
        "Breathing": {"title": "Mindful Sigh", "description": "Inhale deeply through your nose and exhale with an audible sigh. A simple way to release tension and reset.", "link": "https://www.youtube.com/watch?v=r6Vynwn_q-U"},
        "Yoga": {"title": "Cat-Cow Stretch", "description": "A gentle, accessible stretch to increase spinal flexibility and calm the mind. Great for any time of day.", "link": "https://www.youtube.com/watch?v=LIVJZZyZ2qM"},
        "Music": {"title": "Lofi Hip Hop Radio", "description": "Relaxing beats perfect for studying, relaxing, or focusing without distraction.", "link": "https://www.youtube.com/watch?v=lTRiuFIWV54"}
    },
    "medium": {
        "Breathing": {"title": "Box Breathing", "description": "Inhale for 4s, hold for 4s, exhale for 4s, hold for 4s. A powerful technique to calm the nervous system.", "link": "https://www.youtube.com/watch?v=tEmt1Znux58"},
        "Yoga": {"title": "Child's Pose", "description": "A resting pose that can help relieve stress and fatigue. It gently stretches your back, hips, and ankles.", "link": "https://www.youtube.com/watch?v=kH12QrSGedM"},
        "Music": {"title": "Calm Piano Music", "description": "Beautiful, light piano music that can help reduce anxiety and promote a sense of peace.", "link": "https://www.youtube.com/watch?v=5OIeIaAhQOg"}
    },
    "high": {
        "Breathing": {"title": "4-7-8 Breathing", "description": "Inhale for 4s, hold your breath for 7s, and exhale slowly for 8s. Excellent for reducing anxiety quickly.", "link": "https://www.youtube.com/watch?v=LiUnFJ8P4gM"},
        "Yoga": {"title": "Legs-Up-The-Wall Pose", "description": "A restorative pose that helps calm the nervous system and reduce stress and anxiety.", "link": "https://www.youtube.com/watch?v=do_1LisFah0"},
        "Music": {"title": "Weightless by Marconi Union", "description": "Specifically designed in collaboration with sound therapists to reduce anxiety, heart rate, and blood pressure.", "link": "https://www.youtube.com/watch?v=UfcAVejslrU"}
    }
}


@app.route("/api/auth/register", methods=["POST"])
def register():
    data = request.get_json()
    name = data.get('name')
    email = data.get('email')
    password = data.get('password')

    if not name or not email or not password:
        return jsonify({"msg": "Missing name, email, or password"}), 400

    if users_collection.find_one({"email": email}):
        return jsonify({"msg": "Email already exists"}), 409

    hashed_password = bcrypt.generate_password_hash(password).decode('utf-8')
    user_id = users_collection.insert_one({
        "name": name,
        "email": email,
        "password": hashed_password,
        "created_at": datetime.utcnow()
    }).inserted_id

    access_token = create_access_token(identity=str(user_id))
    logger.info(f"New user registered: {email}")
    return jsonify(access_token=access_token, user={"id": str(user_id), "name": name, "email": email}), 201

@app.route("/api/auth/login", methods=["POST"])
def login():
    data = request.get_json()
    email = data.get('email')
    password = data.get('password')

    if not email or not password:
        return jsonify({"msg": "Missing email or password"}), 400

    user = users_collection.find_one({"email": email})

    if user and bcrypt.check_password_hash(user['password'], password):
        access_token = create_access_token(identity=str(user['_id']))
        logger.info(f"User logged in: {email}")
        return jsonify(access_token=access_token, user={"id": str(user['_id']), "name": user['name'], "email": user['email']})
    
    return jsonify({"msg": "Invalid credentials"}), 401

# ===================================================================================
# --- API ROUTES ---
# ===================================================================================

@app.route("/api/predict-stress", methods=["POST"])
@jwt_required()
def predict_stress_route():
    current_user_id = get_jwt_identity()
    if not stress_model or not stress_scaler:
        return jsonify({"error": "Stress model is not available."}), 500

    data = request.json
    features = np.array([[float(data["heart_rate"]), float(data["steps"]), float(data["sleep"]), float(data["age"])]])
    scaled_features = stress_scaler.transform(features)
    prediction = stress_model.predict(scaled_features)
    stress_level = int(np.round(prediction[0][0]))
    stress_level = max(0, min(10, stress_level))

    stress_logs_collection.insert_one({
        "user_id": ObjectId(current_user_id),
        "stress_level": stress_level,
        "inputs": data,
        "timestamp": datetime.utcnow()
    })
    
    # --- UPDATED RESPONSE ---
    category = 'low'
    if 4 <= stress_level <= 6:
        category = 'medium'
    elif stress_level > 6:
        category = 'high'
        
    suggestions = [
        {"type": "Breathing", **suggestion_library[category]["Breathing"]},
        {"type": "Yoga", **suggestion_library[category]["Yoga"]},
        {"type": "Music", **suggestion_library[category]["Music"]},
    ]

    logger.info(f"Stress prediction for user {current_user_id} saved. Level: {stress_level}")
    return jsonify({
        "stress_level": stress_level,
        "suggestions": suggestions
    })

# ===================================================================================
# --- NEW: CHAT HISTORY ROUTE ---
# ===================================================================================

@app.route("/api/chat/history", methods=["GET"])
@jwt_required()
def get_chat_history():
    """
    Fetches the last 20 messages for the logged-in user.
    """
    try:
        current_user_id = get_jwt_identity()
        
        # 1. Query the database for the user's chat logs
        # - Filter by the current user's ID
        # - Sort by timestamp in descending order to get the newest first
        # - Limit to 20 documents (which is 10 user/AI message pairs)
        history_cursor = chat_logs_collection.find(
            {"user_id": ObjectId(current_user_id)}
        ).sort("timestamp", -1).limit(20)

        # 2. Format the documents for the frontend
        history_list = []
        for log in history_cursor:
            history_list.append({
                "id": str(log["_id"]), # Convert ObjectId to string
                "user_message": log.get("user_message"),
                "ai_response": log.get("ai_response"),
                "timestamp": log["timestamp"].isoformat() # Use ISO format for consistency
            })
            
        # 3. Reverse the list so it's in chronological order (oldest first)
        # This makes it easier to display in the chat window.
        history_list.reverse()
        
        return jsonify(history_list), 200

    except Exception as e:
        logger.error(f"Error fetching chat history for user {current_user_id}: {e}")
        return jsonify({"error": "An internal server error occurred while fetching chat history."}), 500


# --- NEW ROUTE: To add context to the chat history ---
@app.route("/api/chat/context", methods=["POST"])
@jwt_required()
def add_chat_context():
    current_user_id = get_jwt_identity()
    data = request.get_json()
    event_type = data.get("event_type")
    event_data = data.get("data", {})

    system_message = ""
    if event_type == "STRESS_DETECTED" and event_data.get("level"):
        system_message = f"System Note: The user just recorded a stress level of {event_data['level']}/10."
    elif event_type == "EMOTION_DETECTED" and event_data.get("emotion"):
        system_message = f"System Note: The user's emotion was just detected as {event_data['emotion']} with {event_data.get('confidence', 'N/A')}% confidence."

    if system_message:
        chat_logs_collection.insert_one({
            "user_id": ObjectId(current_user_id),
            "role": "system",  # Special role for context
            "content": system_message,
            "timestamp": datetime.utcnow()
        })
        return jsonify({"msg": "Context added successfully"}), 200
    
    return jsonify({"msg": "Invalid event"}), 400



# In app.py, replace your entire chat_route function with this one

@app.route("/api/chat", methods=["POST"])
@jwt_required()
def chat_route():
    current_user_id = get_jwt_identity()
    data = request.get_json()
    message_text = data.get("message")

    if not message_text:
        return jsonify({"msg": "Message is required"}), 400

    # --- 1. Crisis Check ---
    crisis_keywords = ['suicide', 'kill myself', 'self-harm', 'want to die', 'end my life']
    if any(keyword in message_text.lower() for keyword in crisis_keywords):
        helpline_info = helplines.get("India", helplines.get("Global"))
        response_text = f"It sounds like you are in significant distress. Please reach out for immediate help. You can connect with someone at: {helpline_info}. Help is available and you are not alone."
        chat_logs_collection.insert_one({
            "user_id": ObjectId(current_user_id),
            "user_message": message_text,
            "ai_response": "CRISIS_INTERVENTION_TRIGGERED: " + response_text,
            "detected_emotion": "crisis",
            "timestamp": datetime.utcnow()
        })
        return jsonify({"response": response_text}), 200

    # --- 2. Build Context from History ---
    history_cursor = chat_logs_collection.find(
        {"user_id": ObjectId(current_user_id)}
    ).sort("timestamp", -1).limit(10)
    
    chat_history_for_prompt = ""
    for log in reversed(list(history_cursor)): 
        if log.get("role") == "system":
            chat_history_for_prompt += f"{log.get('content')}\n"
        # Make sure to check for the old format too for backward compatibility
        elif log.get("user_message") and log.get("ai_response"):
            chat_history_for_prompt += f"User: {log.get('user_message')}\n"
            chat_history_for_prompt += f"AI: {log.get('ai_response')}\n"
            
    # --- 3. Get Sentiment of the NEW message ---
    inputs = chatbot_tokenizer(message_text, return_tensors="pt", truncation=True, padding=True).to(device)
    with torch.no_grad():
        outputs = chatbot_model(**inputs)
    logits = outputs.logits
    probabilities = torch.softmax(logits, dim=1).cpu().numpy()[0]
    predicted_class_id = np.argmax(probabilities)
    confidence = np.max(probabilities) * 100
    emotion = text_emotion_label_map.get(predicted_class_id, "unknown")

    # --- 4. Call Gemini with FULL context ---
    response_text = generate_gemini_response(emotion, confidence, message_text, chat_history_for_prompt)
    
    # --- 5. Log and Respond ---
    if "CRISIS_RESPONSE" in response_text:
        helpline_info = helplines.get("India", helplines.get("Global"))
        response_text = f"It sounds like you are going through a very difficult time. It's important to talk to someone who can help. Please consider reaching out to: {helpline_info}."
        
    chat_logs_collection.insert_one({
        "user_id": ObjectId(current_user_id),
        "user_message": message_text,
        "ai_response": response_text,
        "detected_emotion": emotion,
        "confidence": f"{confidence:.2f}%",
        "timestamp": datetime.utcnow()
    })
    
    return jsonify({"response": response_text})

@app.route("/api/predict-emotion", methods=["POST"])
@jwt_required()
def predict_emotion_route():
    if not facial_emotion_model:
        return jsonify({"error": "Facial emotion model is not available. Check server logs."}), 500
        
    try:
        data = request.json
        # The frontend will calculate these features and send them in the request body
        feature_vector = np.array([[
            data['avg_ear'],
            data['mar'],
            data['eyebrow_dist'],
            data['jaw_drop']
        ]])

        predicted_class = facial_emotion_model.predict(feature_vector)[0]
        emotion = facial_emotion_labels[predicted_class]
        
        prediction_proba = facial_emotion_model.predict_proba(feature_vector)[0]
        confidence = round(max(prediction_proba) * 100, 2)

        logger.info(f"Facial emotion prediction: {emotion} ({confidence}%)")
        return jsonify({"emotion": emotion, "confidence": confidence})

    except Exception as e:
        logger.error(f"Error in /api/predict-emotion: {e}")
        return jsonify({"error": "An error occurred during emotion prediction."}), 400

# ===================================================================================
# --- NEW: THERAPIST FINDER ROUTE ---
# ===================================================================================

@app.route("/api/therapists", methods=["GET"])
@jwt_required()
def find_therapists_route():
    lat = request.args.get("lat")
    lng = request.args.get("lng")
    query = request.args.get("query", "mental health therapist")

    if not lat or not lng:
        return jsonify({"error": "Latitude and longitude are required"}), 400

    fallback_locations = [
        {"name": "Mumbai", "lat": 19.076, "lng": 72.8777},
        {"name": "Delhi", "lat": 28.6139, "lng": 77.209},
        {"name": "Bangalore", "lat": 12.9716, "lng": 77.5946},
    ]

    def fetch_therapists(fs_lat, fs_lng, fs_query):
        api_url = "https://places-api.foursquare.com/places/search"
        api_key = os.environ.get("FOURSQUARE_SERVICE_KEY")


        headers = {
            "Authorization": f"Bearer {api_key}" if api_key else "",
            "Accept": "application/json",
            "X-Places-API-Version": "2025-06-17",
        }
        params = {
            "ll": f"{fs_lat},{fs_lng}",
            "query": fs_query,
            "radius": 10000,
            "limit": 20,
        }


        try:
            response = requests.get(api_url, headers=headers, params=params)
            response.raise_for_status()
            data = response.json()

            results = []
            for place in data.get("results", []):
                lat_val = (
                    place.get("geocodes", {}).get("main", {}).get("latitude")
                    or place.get("latitude")
                )
                lng_val = (
                    place.get("geocodes", {}).get("main", {}).get("longitude")
                    or place.get("longitude")
                )

                if not lat_val or not lng_val:
                    continue

                results.append({
                    "id": place.get("fsq_id") or place.get("fsq_place_id"),
                    "name": place.get("name"),
                    "address": ", ".join(
                        filter(
                            None,
                            [
                                place.get("location", {}).get("address"),
                                place.get("location", {}).get("locality"),
                                place.get("location", {}).get("region"),
                            ],
                        )
                    ) or "Address not available",
                    "latitude": lat_val,
                    "longitude": lng_val,
                    "phone": place.get("tel"),
                })

            return results

        except requests.exceptions.RequestException as e:
            return []

    # Try user location
    results = fetch_therapists(lat, lng, query)

    # If no results, try fallback cities
    if not results:
        for loc in fallback_locations:
            results = fetch_therapists(loc["lat"], loc["lng"], query)
            if results:

                break

    return jsonify(results)

# ===================================================================================
# --- NEW: DASHBOARD HISTORY ROUTE ---
# ===================================================================================

@app.route("/api/history", methods=["GET"])
@jwt_required()
def get_history():
    current_user_id = get_jwt_identity()
    try:
        seven_days_ago = datetime.utcnow() - timedelta(days=7)
        
        stress_logs_cursor = stress_logs_collection.find({
            "user_id": ObjectId(current_user_id),
            "timestamp": {"$gte": seven_days_ago}
        }).sort("timestamp", 1)

        stress_logs = list(stress_logs_cursor)

        # --- NEW: Aggregate data for Pie Chart ---
        stress_summary = {"Low": 0, "Medium": 0, "High": 0}
        for log in stress_logs:
            level = log['stress_level']
            if level <= 3:
                stress_summary["Low"] += 1
            elif 4 <= level <= 6:
                stress_summary["Medium"] += 1
            else:
                stress_summary["High"] += 1
        
        pie_chart_data = [{"name": key, "value": value} for key, value in stress_summary.items()]

        # (Existing history logic remains)
        dates_last_7_days = [(seven_days_ago + timedelta(days=i)).strftime("%b %d") for i in range(8)]
        stress_map = {date: None for date in dates_last_7_days}
        for log in stress_logs:
            date_str = log['timestamp'].strftime("%b %d")
            stress_map[date_str] = log['stress_level']
        stress_history = [{"date": date, "level": level} for date, level in stress_map.items()]

        last_stress_score = stress_logs[-1]['stress_level'] if stress_logs else "N/A"
        # --- 3. Get Last Chat Insight ---
        last_chat_log = chat_logs_collection.find_one(
            {"user_id": ObjectId(current_user_id), "ai_response": {"$exists": True}},
            sort=[("timestamp", -1)]
        )
        # 2. Use the safe .get() method to prevent crashes.
        last_chat_insight = last_chat_log.get('ai_response') if last_chat_log else "No recent chats."

        # --- 4. Combine and Return Data ---
      
        dashboard_data = {
            "stress_history": stress_history,
            "stress_summary_pie": pie_chart_data, # NEW
            "last_stress_score": last_stress_score,
            "last_chat_insight": last_chat_insight
        }
        
        return jsonify(dashboard_data), 200
    except Exception as e:
        logger.error(f"Error fetching history for user {current_user_id}: {e}")
        return jsonify({"error": "An internal server error occurred."}), 500


@app.route("/api/resources", methods=["GET"])
@jwt_required()
def get_resources():
    # This data is hardcoded for easy management, but could be moved to a database.
    resources_data = [
        {
            "category": "Immediate Help & Helplines",
            "items": [
                {
                    "title": "iCall Psychosocial Helpline (India)",
                    "description": "Free telephone and email-based counseling services provided by trained mental health professionals.",
                    "link": "https://icallhelpline.org/"
                },
                {
                    "title": "Samaritans Mumbai (India)",
                    "description": "Provides emotional support to anyone in distress, struggling to cope, or at risk of suicide.",
                    "link": "http://www.samaritansmumbai.com/"
                },
                {
                    "title": "National Suicide Prevention Lifeline (US)",
                    "description": "A national network of local crisis centers that provides free and confidential emotional support.",
                    "link": "https://suicidepreventionlifeline.org/"
                }
            ]
        },
        {
            "category": "Guided Meditations & Mindfulness",
            "items": [
                {
                    "title": "10-Minute Meditation for Beginners",
                    "description": "A simple, guided meditation to help you start your mindfulness practice.",
                    "link": "https://www.youtube.com/watch?v=O-6f5wQXSu8"
                },
                {
                    "title": "Mindful Breathing Exercise",
                    "description": "A short exercise focusing on the breath to calm anxiety and center your thoughts.",
                    "link": "https://youtu.be/watch?v=r6Vynwn_q-U"
                }
            ]
        },
        {
            "category": "Understanding Anxiety",
            "items": [
                {
                    "title": "What Is Anxiety?",
                    "description": "An informative article from the American Psychiatric Association explaining anxiety disorders.",
                    "link": "https://www.psychiatry.org/patients-families/anxiety-disorders/what-are-anxiety-disorders"
                },
                {
                    "title": "How to Cope with Anxiety",
                    "description": "Practical tips and strategies for managing anxiety symptoms in your daily life from Mind UK.",
                    "link": "https://www.mind.org.uk/information-support/types-of-mental-health-problems/anxiety-and-panic-attacks/self-care/"
                }
            ]
        }
    ]
    return jsonify(resources_data), 200


@app.route("/api/cbt-records", methods=["POST"])
@jwt_required()
def add_cbt_record():
    """Saves a new CBT Thought Record to the database."""
    current_user_id = get_jwt_identity()
    data = request.get_json()

    # Basic validation
    required_fields = ['situation', 'automatic_thought', 'emotions', 'alternative_thought']
    if not all(field in data for field in required_fields):
        return jsonify({"msg": "Missing required fields"}), 400

    record = {
        "user_id": ObjectId(current_user_id),
        "situation": data.get("situation"),
        "automatic_thought": data.get("automatic_thought"),
        "emotions": data.get("emotions"),
        "alternative_thought": data.get("alternative_thought"),
        "timestamp": datetime.utcnow()
    }
    cbt_records_collection.insert_one(record)
    return jsonify({"msg": "Record saved successfully"}), 201


@app.route("/api/cbt-records", methods=["GET"])
@jwt_required()
def get_cbt_records():
    """Fetches all CBT Thought Records for the logged-in user."""
    current_user_id = get_jwt_identity()
    records_cursor = cbt_records_collection.find(
        {"user_id": ObjectId(current_user_id)}
    ).sort("timestamp", -1) # Sort by newest first

    records_list = []
    for record in records_cursor:
        record["_id"] = str(record["_id"])
        record["user_id"] = str(record["user_id"])
        records_list.append(record)
        
    return jsonify(records_list), 200

# --- ADD THIS NEW ROUTE FOR MEDITATIONS ---
@app.route("/api/meditations", methods=["GET"])
@jwt_required()
def get_meditations():
    try:
        if meditations_collection is None:
            return jsonify({"error": "Database not connected"}), 500
            
        all_meditations = list(meditations_collection.find({}))
        # Convert the MongoDB ObjectId to a string if you are not using custom string _id's
        for med in all_meditations:
            if '_id' in med and not isinstance(med['_id'], str):
                 med['_id'] = str(med['_id'])
        return jsonify(all_meditations)
    except Exception as e:
        logger.error(f"Error fetching meditations: {e}")
        return jsonify({"error": "Could not fetch meditations"}), 500
    

if __name__ == "__main__":
    app.run(host='0.0.0.0', port=7860)