|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Any, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.pytorch_utils import Conv1D |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
|
|
|
|
class FourierFTLayer(BaseTunerLayer): |
|
|
|
adapter_layer_names = ("fourierft_spectrum",) |
|
|
|
other_param_names = ("fourierft_n_frequency", "fourierft_scaling", "fourierft_random_loc_seed") |
|
|
|
def __init__(self, base_layer: nn.Module, **kwargs) -> None: |
|
self.base_layer = base_layer |
|
self.fourierft_n_frequency = {} |
|
self.fourierft_scaling = {} |
|
self.fourierft_spectrum = nn.ParameterDict({}) |
|
self.indices = {} |
|
self.fourierft_random_loc_seed = {} |
|
|
|
self._disable_adapters = False |
|
self.merged_adapters = [] |
|
self.kwargs = kwargs |
|
|
|
base_layer = self.get_base_layer() |
|
if isinstance(base_layer, nn.Linear): |
|
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features |
|
elif isinstance(base_layer, Conv1D): |
|
self.in_features, self.out_features = ( |
|
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape |
|
) |
|
else: |
|
raise ValueError(f"Unsupported layer type {type(base_layer)}") |
|
|
|
def update_layer(self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed): |
|
if n_frequency <= 0: |
|
raise ValueError(f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}") |
|
if n_frequency > self.in_features * self.out_features: |
|
raise ValueError( |
|
f"`n_frequency` should be less than or equal to the product of the input and output dimensions " |
|
f"but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}" |
|
) |
|
self.fourierft_n_frequency[adapter_name] = n_frequency |
|
self.fourierft_random_loc_seed[adapter_name] = random_loc_seed |
|
self.indices[adapter_name] = torch.randperm( |
|
self.out_features * self.in_features, |
|
generator=torch.Generator().manual_seed(self.fourierft_random_loc_seed[adapter_name]), |
|
)[:n_frequency] |
|
self.indices[adapter_name] = torch.stack( |
|
[self.indices[adapter_name] // self.in_features, self.indices[adapter_name] % self.in_features], dim=0 |
|
) |
|
self.fourierft_scaling[adapter_name] = scaling |
|
|
|
self.fourierft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency), requires_grad=True) |
|
|
|
if init_weights: |
|
self.reset_fourier_parameters(adapter_name) |
|
|
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
self.set_adapter(self.active_adapters) |
|
|
|
@torch.no_grad() |
|
def reset_fourier_parameters(self, adapter_name): |
|
if adapter_name in self.fourierft_spectrum.keys(): |
|
nn.init.zeros_(self.fourierft_spectrum[adapter_name]) |
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
spectrum = self.fourierft_spectrum[adapter] |
|
indices = self.indices[adapter].to(spectrum.device) |
|
dense_spectrum = torch.zeros(self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype) |
|
dense_spectrum[indices[0, :], indices[1, :]] = spectrum |
|
delta_weight = torch.fft.ifft2(dense_spectrum).real * self.fourierft_scaling[adapter] |
|
return delta_weight |
|
|
|
|
|
class FourierFTLinear(nn.Module, FourierFTLayer): |
|
|
|
def __init__( |
|
self, |
|
base_layer, |
|
adapter_name: str, |
|
n_frequency: int = 1000, |
|
scaling: float = 150.0, |
|
fan_in_fan_out: bool = False, |
|
init_weights: Union[bool, str] = False, |
|
random_loc_seed: int = 777, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
FourierFTLayer.__init__(self, base_layer, **kwargs) |
|
self.fan_in_fan_out = fan_in_fan_out |
|
self._active_adapter = adapter_name |
|
self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed) |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`List[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter in self.fourierft_spectrum.keys(): |
|
base_layer = self.get_base_layer() |
|
if safe_merge: |
|
|
|
|
|
orig_weights = base_layer.weight.data.clone() |
|
orig_weights += self.get_delta_weight(active_adapter) |
|
|
|
if not torch.isfinite(orig_weights).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
|
|
base_layer.weight.data = orig_weights |
|
else: |
|
base_layer.weight.data += self.get_delta_weight(active_adapter) |
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter in self.fourierft_spectrum.keys(): |
|
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) |
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
return super().get_delta_weight(adapter) |
|
|
|
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: |
|
previous_dtype = x.dtype |
|
|
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.fourierft_spectrum.keys(): |
|
continue |
|
|
|
delta_w = self.get_delta_weight(active_adapter) |
|
x = x.to(delta_w.dtype) |
|
result = result + F.linear(x, delta_w) |
|
|
|
result = result.to(previous_dtype) |
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "fourierft." + rep |
|
|