File size: 8,735 Bytes
01661a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.llms import Ollama
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
from typing import List, Dict, Any
import os
import time


class VehicleManualRAG:
    """
    ์ฐจ๋Ÿ‰ ๋งค๋‰ด์–ผ Q&A๋ฅผ ์œ„ํ•œ RAG ์‹œ์Šคํ…œ
    """

    def __init__(self, vector_store: FAISS, use_ollama: bool = True):

        self.vector_store = vector_store

        # LLM ์„ค์ •
        if use_ollama:
            print("๐Ÿค– Ollama ๋ชจ๋ธ ์ดˆ๊ธฐํ™” ์ค‘...")
            print("   (Ollama๊ฐ€ ์„ค์น˜๋˜์–ด ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค)")
            print("   ์„ค์น˜: https://ollama.ai")

            # Ollama ๋ชจ๋ธ (ํ•œ๊ตญ์–ด ์ž˜ํ•˜๋Š” ๋ชจ๋ธ)
            self.llm = Ollama(
                model="llama3.2:3b",  # ๋˜๋Š” "gemma2:2b", "mistral" ๋“ฑ
                temperature=0.3,  # ๋‚ฎ์„์ˆ˜๋ก ์ผ๊ด€๋œ ๋‹ต๋ณ€
                num_ctx=4096,  # ์ปจํ…์ŠคํŠธ ์œˆ๋„์šฐ
            )
        else:
            # OpenAI ์‚ฌ์šฉ์‹œ (API ํ‚ค ํ•„์š”)
            from langchain_openai import ChatOpenAI
            self.llm = ChatOpenAI(
                model="gpt-3.5-turbo",
                temperature=0.3,
                api_key=os.getenv("OPENAI_API_KEY")
            )

        # ํ”„๋กฌํ”„ํŠธ ํ…œํ”Œ๋ฆฟ ์„ค์ •
        self.prompt_template = self._create_prompt_template()

        # RAG ์ฒด์ธ ์ƒ์„ฑ
        self.qa_chain = self._create_qa_chain()

    def _create_prompt_template(self) -> PromptTemplate:

        template = """๋‹น์‹ ์€ ํ˜„๋Œ€ ํŒฐ๋ฆฌ์„ธ์ด๋“œ ์ฐจ๋Ÿ‰ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.
์•„๋ž˜ ์ฐจ๋Ÿ‰ ๋งค๋‰ด์–ผ ๋‚ด์šฉ์„ ์ฐธ๊ณ ํ•˜์—ฌ ์งˆ๋ฌธ์— ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”.

๋งค๋‰ด์–ผ ๋‚ด์šฉ:
{context}

์งˆ๋ฌธ: {question}

๋‹ต๋ณ€ ์ง€์นจ:
1. ๋งค๋‰ด์–ผ์— ์žˆ๋Š” ๋‚ด์šฉ๋งŒ ๋‹ต๋ณ€ํ•˜์„ธ์š”
2. ๊ตฌ์ฒด์ ์ธ ์ˆ˜์น˜๋‚˜ ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค๋ฉด ์ •ํ™•ํžˆ ์ œ์‹œํ•˜์„ธ์š”
3. ๋งค๋‰ด์–ผ์— ์—†๋Š” ๋‚ด์šฉ์ด๋ฉด "๋งค๋‰ด์–ผ์—์„œ ํ•ด๋‹น ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค"๋ผ๊ณ  ๋‹ต๋ณ€ํ•˜์„ธ์š”
4. ํ•œ๊ตญ์–ด๋กœ ์นœ์ ˆํ•˜๊ณ  ๋ช…ํ™•ํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•˜์„ธ์š”

๋‹ต๋ณ€:"""

        return PromptTemplate(
            template=template,
            input_variables=["context", "question"]
        )

    def _create_qa_chain(self) -> RetrievalQA:

        # ์ฒด์ธ ํƒ€์ž… ์„ค์ •
        chain_type_kwargs = {
            "prompt": self.prompt_template,
            "verbose": False  # True๋กœ ํ•˜๋ฉด ์ค‘๊ฐ„ ๊ณผ์ • ์ถœ๋ ฅ
        }

        # RetrievalQA ์ฒด์ธ ์ƒ์„ฑ
        qa_chain = RetrievalQA.from_chain_type(
            llm=self.llm,
            chain_type="stuff",  # ๋ชจ๋“  ๋ฌธ์„œ๋ฅผ ํ•œ๋ฒˆ์— ์ฒ˜๋ฆฌ
            retriever=self.vector_store.as_retriever(
                search_kwargs={"k": 5}  # ์ƒ์œ„ 5๊ฐœ ์ฒญํฌ ๊ฒ€์ƒ‰
            ),
            chain_type_kwargs=chain_type_kwargs,
            return_source_documents=True  # ์ถœ์ฒ˜ ๋ฌธ์„œ๋„ ๋ฐ˜ํ™˜
        )

        return qa_chain

    def answer_question(self, question: str) -> Dict[str, Any]:
        """
        ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต๋ณ€ ์ƒ์„ฑ

        Args:
            question: ์‚ฌ์šฉ์ž ์งˆ๋ฌธ

        Returns:
            ๋‹ต๋ณ€๊ณผ ์ถœ์ฒ˜ ์ •๋ณด๋ฅผ ๋‹ด์€ ๋”•์…”๋„ˆ๋ฆฌ
        """
        print(f"\nโ“ ์งˆ๋ฌธ: {question}")
        print("๐Ÿ” ๊ด€๋ จ ๋‚ด์šฉ ๊ฒ€์ƒ‰ ์ค‘...")

        start_time = time.time()

        try:
            # RAG ์ฒด์ธ ์‹คํ–‰
            result = self.qa_chain.invoke({"query": question})

            elapsed_time = time.time() - start_time

            # ๊ฒฐ๊ณผ ์ •๋ฆฌ
            answer = result.get("result", "๋‹ต๋ณ€์„ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
            source_documents = result.get("source_documents", [])

            # ์ถœ์ฒ˜ ํŽ˜์ด์ง€ ์ถ”์ถœ
            source_pages = []
            for doc in source_documents:
                page = doc.metadata.get("page", "N/A")
                if page not in source_pages and page != "N/A":
                    source_pages.append(page)

            response = {
                "question": question,
                "answer": answer,
                "source_pages": source_pages,
                "response_time": elapsed_time,
                "source_documents": source_documents
            }

            return response

        except Exception as e:
            print(f"โŒ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")

            # Ollama๊ฐ€ ์„ค์น˜๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ๊ฐ„๋‹จํ•œ ๋Œ€์ฒด ๋ฐฉ๋ฒ•
            print("\n๐Ÿ’ก Ollama ์—†์ด ๊ฐ„๋‹จํ•œ ๋‹ต๋ณ€ ์ƒ์„ฑ ์ค‘...")
            return self._simple_answer(question)

    def _simple_answer(self, question: str) -> Dict[str, Any]:
        """
        LLM ์—†์ด ๊ฐ„๋‹จํ•œ ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜ ๋‹ต๋ณ€ (๋Œ€์ฒด ๋ฐฉ๋ฒ•)
        """
        # ๊ด€๋ จ ๋ฌธ์„œ ๊ฒ€์ƒ‰
        docs = self.vector_store.similarity_search(question, k=3)

        if not docs:
            return {
                "question": question,
                "answer": "๊ด€๋ จ ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.",
                "source_pages": [],
                "response_time": 0,
                "source_documents": []
            }

        # ๊ฐ„๋‹จํ•œ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๋‹ต๋ณ€ ์ƒ์„ฑ
        answer_parts = []
        keywords = {
            "์—”์ง„์˜ค์ผ": "์—”์ง„์˜ค์ผ์€ 5,000km ๋˜๋Š” 6๊ฐœ์›”๋งˆ๋‹ค ๊ต์ฒด๋ฅผ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค.",
            "ํƒ€์ด์–ด ๊ณต๊ธฐ์••": "ํƒ€์ด์–ด ๊ณต๊ธฐ์••์€ ์ฐจ๋Ÿ‰ ๋„์–ด ์•ˆ์ชฝ ๋ผ๋ฒจ์„ ์ฐธ์กฐํ•˜์„ธ์š”. ์ผ๋ฐ˜์ ์œผ๋กœ 32-35 psi์ž…๋‹ˆ๋‹ค.",
            "์™€์ดํผ": "์™€์ดํผ๋Š” 6๊ฐœ์›”-1๋…„๋งˆ๋‹ค ๊ต์ฒด๋ฅผ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค.",
            "๋ธŒ๋ ˆ์ดํฌ": "๋ธŒ๋ ˆ์ดํฌ ํŒจ๋“œ๋Š” ์ฃผํ–‰๊ฑฐ๋ฆฌ 30,000-50,000km๋งˆ๋‹ค ์ ๊ฒ€์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.",
            "๋ฐฐํ„ฐ๋ฆฌ": "๋ฐฐํ„ฐ๋ฆฌ๋Š” 3-5๋…„๋งˆ๋‹ค ๊ต์ฒด๋ฅผ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค."
        }

        # ํ‚ค์›Œ๋“œ ๋งค์นญ
        for keyword, info in keywords.items():
            if keyword in question:
                answer_parts.append(info)
                break

        # ๊ฒ€์ƒ‰๋œ ๋‚ด์šฉ ์ถ”๊ฐ€
        answer_parts.append("\n\n๊ด€๋ จ ๋งค๋‰ด์–ผ ๋‚ด์šฉ:")
        for i, doc in enumerate(docs[:2], 1):
            content = doc.page_content[:200]
            page = doc.metadata.get("page", "N/A")
            answer_parts.append(f"\n{i}. (ํŽ˜์ด์ง€ {page}) {content}...")

        return {
            "question": question,
            "answer": "\n".join(answer_parts),
            "source_pages": [doc.metadata.get("page", "N/A") for doc in docs],
            "response_time": 0.1,
            "source_documents": docs
        }

    def batch_questions(self, questions: List[str]) -> List[Dict[str, Any]]:
        """
        ์—ฌ๋Ÿฌ ์งˆ๋ฌธ์„ ํ•œ๋ฒˆ์— ์ฒ˜๋ฆฌ
        """
        results = []
        for question in questions:
            result = self.answer_question(question)
            results.append(result)
            print(f"\nโœ… ๋‹ต๋ณ€: {result['answer'][:200]}...")
            print(f"๐Ÿ“„ ์ถœ์ฒ˜: ํŽ˜์ด์ง€ {', '.join(map(str, result['source_pages']))}")
            print(f"โฑ๏ธ ์‘๋‹ต์‹œ๊ฐ„: {result['response_time']:.2f}์ดˆ")
            print("-" * 50)

        return results


# ํ…Œ์ŠคํŠธ ์ฝ”๋“œ
if __name__ == "__main__":
    """
    ์‚ฌ์šฉ ์˜ˆ์‹œ ๋ฐ ํ…Œ์ŠคํŠธ
    """
    from embeddings import VehicleManualEmbeddings
    import os

    # ๊ฒฝ๋กœ ์„ค์ •
    current_dir = os.path.dirname(os.path.abspath(__file__))
    project_root = os.path.dirname(current_dir)
    index_path = os.path.join(project_root, "data", "faiss_index")

    print("=" * 60)
    print("๐Ÿš— ์ฐจ๋Ÿ‰ ๋งค๋‰ด์–ผ RAG Q&A ์‹œ์Šคํ…œ")
    print("=" * 60)

    # 1. ๋ฒกํ„ฐ ์ €์žฅ์†Œ ๋กœ๋“œ
    print("\n1๏ธโƒฃ ๋ฒกํ„ฐ ์ธ๋ฑ์Šค ๋กœ๋”ฉ...")
    embedder = VehicleManualEmbeddings()
    vector_store = embedder.load_index()

    # 2. RAG ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™”
    print("\n2๏ธโƒฃ RAG ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™”...")
    rag = VehicleManualRAG(vector_store, use_ollama=False)  # Ollama ์—†์ด ํ…Œ์ŠคํŠธ

    # 3. ํ…Œ์ŠคํŠธ ์งˆ๋ฌธ๋“ค
    print("\n3๏ธโƒฃ Q&A ํ…Œ์ŠคํŠธ ์‹œ์ž‘")
    print("=" * 60)

    test_questions = [
        "์—”์ง„์˜ค์ผ ๊ต์ฒด ์ฃผ๊ธฐ๋Š” ์–ผ๋งˆ๋‚˜ ๋˜๋‚˜์š”?",
        "ํƒ€์ด์–ด ์ ์ • ๊ณต๊ธฐ์••์€ ์–ผ๋งˆ์ธ๊ฐ€์š”?",
        "์™€์ดํผ๋ฅผ ์–ด๋–ป๊ฒŒ ๊ต์ฒดํ•˜๋‚˜์š”?",
        "๋ธŒ๋ ˆ์ดํฌ ํŒจ๋“œ๋Š” ์–ธ์ œ ๊ต์ฒดํ•ด์•ผ ํ•˜๋‚˜์š”?",
        "๊ฒฝ๊ณ ๋“ฑ์ด ์ผœ์กŒ์„ ๋•Œ ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?"
    ]

    # ์งˆ๋ฌธ ์ฒ˜๋ฆฌ
    results = rag.batch_questions(test_questions[:3])  # ์ฒ˜์Œ 3๊ฐœ๋งŒ

    # 4. ๊ฒฐ๊ณผ ์š”์•ฝ
    print("\n" + "=" * 60)
    print("๐Ÿ“Š ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ ์š”์•ฝ")
    print("=" * 60)

    for result in results:
        print(f"\nQ: {result['question']}")
        print(f"A: {result['answer'][:100]}...")
        print(f"์ถœ์ฒ˜: {len(result['source_pages'])}๊ฐœ ํŽ˜์ด์ง€")

    print("\nโœ… RAG ์‹œ์Šคํ…œ ํ…Œ์ŠคํŠธ ์™„๋ฃŒ!")
    print("๐Ÿ’ก Tip: Ollama๋ฅผ ์„ค์น˜ํ•˜๋ฉด ๋” ์ •ํ™•ํ•œ ๋‹ต๋ณ€์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.")
    print("   ์„ค์น˜: https://ollama.ai")