Spaces:
Sleeping
Sleeping
File size: 17,341 Bytes
8aa70c8 8223da7 9583fd9 8aa70c8 b99112d 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf a83b95d 8223da7 af773bf 8aa70c8 8223da7 af773bf 8223da7 8aa70c8 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 fbac2cf af773bf fbac2cf af773bf fbac2cf af773bf fbac2cf af773bf fbac2cf af773bf fbac2cf af773bf fbac2cf af773bf fbac2cf 8223da7 af773bf 8223da7 8aa70c8 af773bf fbac2cf af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf fbac2cf af773bf fbac2cf af773bf 8aa70c8 af773bf 8aa70c8 af773bf b99112d af773bf b99112d 8223da7 af773bf 3008e25 af773bf 8223da7 1011620 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 3008e25 af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 af773bf b99112d af773bf b99112d af773bf b99112d af773bf b99112d af773bf 8223da7 af773bf 8223da7 af773bf 8223da7 3008e25 af773bf 8223da7 af773bf b99112d af773bf b99112d af773bf 1011620 af773bf 3008e25 af773bf 8223da7 af773bf 8223da7 5b47b5d 8aa70c8 af773bf 8aa70c8 af773bf 8aa70c8 af773bf b99112d af773bf 8aa70c8 af773bf 8aa70c8 8223da7 8aa70c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# -*- coding: utf-8 -*-
"""
Created on Tue May 20 11:00:14 2025
@author: ColinWang
"""
import streamlit as st
import cv2
import time
from streamlit_webrtc import VideoTransformerBase, webrtc_streamer
from PIL import Image
from transformers import pipeline
import os
import base64
from twilio.rest import Client
from collections import Counter
import uuid
import pandas as pd
# ======================
# Model Loading Functions
# ======================
@st.cache_resource
def load_smoke_pipeline():
"""Initialize and cache the smoking image classification pipeline."""
return pipeline("image-classification", model="ccclllwww/smoker_cls_base_V9", use_fast=True)
@st.cache_resource
def load_gender_pipeline():
"""Initialize and cache the gender image classification pipeline."""
return pipeline("image-classification", model="rizvandwiki/gender-classification-2", use_fast=True)
@st.cache_resource
def load_age_pipeline():
"""Initialize and cache the age image classification pipeline."""
return pipeline("image-classification", model="cledoux42/Age_Classify_v001", use_fast=True)
# Preload all models
smoke_pipeline = load_smoke_pipeline()
gender_pipeline = load_gender_pipeline()
age_pipeline = load_age_pipeline()
# ======================
# Twilio Configuration
# ======================
def initialize_twilio_client():
"""Initialize Twilio client using environment variables."""
account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
if not account_sid or not auth_token:
st.error("Twilio credentials not found in environment variables.")
st.stop()
client = Client(account_sid, auth_token)
return client.tokens.create()
token = initialize_twilio_client()
# ======================
# Audio Loading Function
# ======================
@st.cache_resource
def load_audio_files():
"""Load all .wav files from the audio directory into a dictionary."""
audio_dir = "audio"
if not os.path.exists(audio_dir):
st.error(f"Audio directory '{audio_dir}' not found.")
st.stop()
audio_files = [f for f in os.listdir(audio_dir) if f.endswith(".wav")]
audio_dict = {}
for audio_file in audio_files:
with open(os.path.join(audio_dir, audio_file), "rb") as file:
audio_dict[os.path.splitext(audio_file)[0]] = file.read()
return audio_dict
# Load audio files at startup
audio_data = load_audio_files()
# ======================
# Image Processing Functions
# ======================
def detect_smoking(image: Image.Image) -> str:
"""Classify an image for smoking activity."""
try:
output = smoke_pipeline(image)
return output[0]["label"]
except Exception as e:
st.error(f"Image processing error: {str(e)}")
st.stop()
def detect_gender(image: Image.Image) -> str:
"""Classify an image for gender."""
try:
output = gender_pipeline(image)
return output[0]["label"]
except Exception as e:
st.error(f"Image processing error: {str(e)}")
st.stop()
def detect_age(image: Image.Image) -> str:
"""Classify an image for age range."""
try:
output = age_pipeline(image)
return output[0]["label"]
except Exception as e:
st.error(f"Image processing error: {str(e)}")
st.stop()
# ======================
# Real-Time Classification Functions
# ======================
@st.cache_data(show_spinner=False, max_entries=3)
def classify_smoking(image: Image.Image) -> str:
"""Classify an image for smoking and return the label with highest confidence."""
try:
output = smoke_pipeline(image)
return max(output, key=lambda x: x["score"])["label"]
except Exception as e:
st.error(f"Image processing error: {str(e)}")
st.stop()
@st.cache_data(show_spinner=False, max_entries=3)
def classify_gender(image: Image.Image) -> str:
"""Classify an image for gender and return the label with highest confidence."""
try:
output = gender_pipeline(image)
return max(output, key=lambda x: x["score"])["label"]
except Exception as e:
st.error(f"Image processing error: {str(e)}")
st.stop()
@st.cache_data(show_spinner=False, max_entries=3)
def classify_age(image: Image.Image) -> str:
"""Classify an image for age range and return the label with highest confidence."""
try:
output = age_pipeline(image)
return max(output, key=lambda x: x["score"])["label"]
except Exception as e:
st.error(f"Image processing error: {str(e)}")
st.stop()
# ======================
# Audio Playback Function
# ======================
def play_audio(audio_bytes: bytes):
"""Play audio using HTML and JavaScript with Base64-encoded audio data."""
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")
audio_id = f"audio_player_{uuid.uuid4()}"
html_content = f"""
<audio id="{audio_id}" controls style="width: 100%;">
<source src="data:audio/wav;base64,{audio_base64}" type="audio/wav">
Your browser does not support the audio element.
</audio>
<script type="text/javascript">
window.addEventListener('DOMContentLoaded', function() {{
setTimeout(function() {{
var audioElement = document.getElementById("{audio_id}");
if (audioElement) {{
audioElement.play().catch(function(e) {{
console.log("Playback prevented by browser:", e);
}});
}}
}}, 1000);
}});
</script>
"""
st.components.v1.html(html_content, height=150)
# ======================
# Video Transformer Class
# ======================
class VideoTransformer(VideoTransformerBase):
def __init__(self):
self.snapshots = []
self.last_capture_time = time.time()
self.capture_interval = 1 # Capture every 1 second
self.max_snapshots = 5
def transform(self, frame):
"""Process video frame and capture snapshots."""
img = frame.to_ndarray(format="bgr24")
current_time = time.time()
if (current_time - self.last_capture_time >= self.capture_interval and
len(self.snapshots) < self.max_snapshots):
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.snapshots.append(Image.fromarray(img_rgb))
self.last_capture_time = current_time
st.write(f"Captured snapshot {len(self.snapshots)}/{self.max_snapshots}")
return img
# ======================
# Cover Page
# ======================
def cover_page():
"""Display an enhanced cover page with project overview and instructions."""
st.title("Smoking Detection System", anchor=False)
st.markdown("### Welcome to the Smoking Detection System")
st.markdown("""
This Streamlit-based application harnesses cutting-edge machine learning to detect smoking behavior in images and real-time video streams. By analyzing smoking activity, gender, and age demographics, it provides valuable insights for public health monitoring and policy enforcement.
""")
st.markdown("#### Project Overview")
st.markdown("""
- **Purpose**: Automatically identify smoking behavior in public or controlled environments to support compliance with no-smoking policies and facilitate behavioral studies.
- **Significance**: Enhances public health initiatives by enabling real-time monitoring and demographic analysis of smoking activities.
- **Features**:
- **Photo Detection**: Analyze a single image (uploaded or captured) for smoking, gender, and age.
- **Real-Time Video Detection**: Process webcam streams, capturing snapshots to detect smoking and demographics.
- **Audio Feedback**: Play alerts based on detected gender and age when smoking is confirmed.
""")
st.markdown("#### How to Use")
st.markdown("""
1. **Navigate**: Use the sidebar to select a page:
- **Cover Page**: View this overview.
- **Photo Detection**: Upload or capture an image for analysis.
- **Real-Time Video Detection**: Monitor live webcam feed.
2. **Photo Detection**:
- Upload an image or capture one via webcam.
- The system detects smoking; if detected, it analyzes gender and age, playing a corresponding audio alert.
3. **Real-Time Video Detection**:
- Captures 5 snapshots over one minute.
- If smoking is detected in more than 2 snapshots, it analyzes gender and age, displays results in a table, and plays an audio alert.
4. **Setup Requirements**:
- Ensure the 'audio' directory contains .wav files named as '<age_range> <gender>.wav' (e.g., '10-19 male.wav').
- Configure Twilio environment variables (`TWILIO_ACCOUNT_SID` and `TWILIO_AUTH_TOKEN`) for WebRTC functionality.
""")
st.markdown("#### Get Started")
st.markdown("Select a page from the sidebar to begin analyzing images or video streams.")
# ======================
# Photo Detection Page
# ======================
def photo_detection_page():
"""Handle photo detection page for smoking, gender, and age classification."""
audio_placeholder = st.empty()
st.title("Photo Detection", anchor=False)
st.markdown("Upload an image or capture a photo to detect smoking behavior. If smoking is detected, gender and age will be analyzed.")
# Image input selection
option = st.radio("Choose input method", ["Upload Image", "Capture with Camera"], horizontal=True)
image = None
if option == "Upload Image":
uploaded_file = st.file_uploader("Select an image", type=["jpg", "jpeg", "png"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_container_width=True)
else:
enable = st.checkbox("Enable Camera")
camera_file = st.camera_input("Capture Photo", disabled=not enable)
if camera_file:
image = Image.open(camera_file)
st.image(image, caption="Captured Photo", use_container_width=True)
if image:
with st.spinner("Detecting smoking..."):
smoke_result = detect_smoking(image)
st.success(f"Smoking Status: {smoke_result}")
if smoke_result.lower() == "smoking":
with st.spinner("Detecting gender..."):
gender_result = detect_gender(image)
st.success(f"Gender: {gender_result}")
with st.spinner("Detecting age..."):
age_result = detect_age(image)
st.success(f"Age Range: {age_result}")
audio_placeholder.empty()
audio_key = f"{age_result} {gender_result.lower()}"
if audio_key in audio_data:
play_audio(audio_data[audio_key])
else:
st.error(f"Audio file not found: {audio_key}.wav")
# ======================
# Real-Time Detection Page
# ======================
def real_time_detection_page():
"""Handle real-time video detection with snapshot capture and analysis."""
st.title("Real-Time Video Detection", anchor=False)
st.markdown("Captures 5 snapshots over one minute to detect smoking. If smoking is detected in more than 2 snapshots, results include gender, age, and a snapshot in a table.")
# Initialize session state for detection results
if 'detection_results' not in st.session_state:
st.session_state.detection_results = []
# Placeholders for UI elements
capture_text = st.empty()
capture_progress = st.empty()
classification_text = st.empty()
classification_progress = st.empty()
detection_info = st.empty()
status_alert = st.empty() # New placeholder for status alert
table = st.empty()
image_display = st.empty()
audio = st.empty()
# Start video stream
ctx = webrtc_streamer(
key="unique_example",
video_transformer_factory=VideoTransformer,
rtc_configuration={"iceServers": token.ice_servers}
)
capture_target = 5
if ctx.video_transformer:
detection_info.info("Starting detection...")
while True:
snapshots = ctx.video_transformer.snapshots
if len(snapshots) < capture_target:
capture_text.text(f"Capture Progress: {len(snapshots)}/{capture_target} snapshots")
capture_progress.progress(int(len(snapshots) / capture_target * 100))
else:
capture_text.text("Capture Progress: Completed!")
capture_progress.empty()
detection_info.empty()
classification_text.text("Classification Progress: Analyzing...")
classification = classification_progress.progress(0)
# Classify snapshots
smoke_results = [classify_smoking(img) for img in snapshots]
smoking_count = sum(1 for result in smoke_results if result.lower() == "smoking")
classification.progress(33)
if smoking_count > 2:
status_alert.error("Smoking Detected!") # Red alert for smoking
gender_results = [classify_gender(img) for img in snapshots]
classification.progress(66)
age_results = [classify_age(img) for img in snapshots]
classification.progress(100)
classification_text.text("Classification Progress: Completed!")
# Determine most common gender and age
most_common_gender = Counter(gender_results).most_common(1)[0][0]
most_common_age = Counter(age_results).most_common(1)[0][0]
# Select first smoking snapshot
smoking_image = next((snapshots[i] for i, label in enumerate(smoke_results) if label.lower() == "smoking"), snapshots[0])
# Store results
st.session_state.detection_results.append({
"Timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"Snapshot": smoking_image,
"Gender": most_common_gender,
"Age Range": most_common_age,
"Smoking Count": smoking_count
})
# Update table
df = pd.DataFrame([
{
"Timestamp": result["Timestamp"],
"Gender": result["Gender"],
"Age Range": result["Age Range"],
"Smoking Count": result["Smoking Count"]
} for result in st.session_state.detection_results
])
table.dataframe(df, use_container_width=True)
# Display snapshot
image_display.image(smoking_image, caption="Detected Smoking Snapshot", use_container_width=True)
# Play audio
audio.empty()
audio_key = f"{most_common_age} {most_common_gender.lower()}"
if audio_key in audio_data:
play_audio(audio_data[audio_key])
else:
st.error(f"Audio file not found: {audio_key}.wav")
else:
status_alert.success("No Smoking Detected") # Green alert for no smoking
image_display.empty()
audio.empty()
classification_text.text("Classification Progress: Completed!")
classification_progress.progress(100)
# Update table if results exist
if st.session_state.detection_results:
df = pd.DataFrame([
{
"Timestamp": result["Timestamp"],
"Gender": result["Gender"],
"Age Range": result["Age Range"],
"Smoking Count": result["Smoking Count"]
} for result in st.session_state.detection_results
])
table.dataframe(df, use_container_width=True)
# Reset for next cycle
time.sleep(5)
classification_progress.empty()
classification_text.empty()
capture_text.empty()
status_alert.empty() # Clear the alert for the next cycle
detection_info.info("Starting detection...")
ctx.video_transformer.snapshots = []
ctx.video_transformer.last_capture_time = time.time()
time.sleep(0.1)
# ======================
# Main Application
# ======================
def main():
"""Main function to handle page navigation."""
st.sidebar.title("Navigation")
page = st.sidebar.selectbox("Select Page", ["Cover Page", "Photo Detection", "Real-Time Video Detection"])
if page == "Cover Page":
cover_page()
elif page == "Photo Detection":
photo_detection_page()
elif page == "Real-Time Video Detection":
real_time_detection_page()
if __name__ == "__main__":
main() |