|
import os |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from dotenv import load_dotenv |
|
from huggingface_hub import InferenceClient, login |
|
|
|
load_dotenv() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
TOKEN = None |
|
|
|
|
|
def get_token(oauth_token: gr.OAuthToken | None): |
|
global TOKEN |
|
if oauth_token and oauth_token.token: |
|
print("Received OAuth token, logging in...") |
|
TOKEN = oauth_token.token |
|
else: |
|
print("No OAuth token provided, using environment variable HF_TOKEN.") |
|
TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
def generate(prompt: str, seed: int =42, width: int =1024, height: int =1024, num_inference_steps: int = 25): |
|
""" |
|
Generate an image from a prompt. |
|
Args: |
|
prompt (str): |
|
The prompt to generate an image from. |
|
seed (int, default=42): |
|
Seed for the random number generator. |
|
height (int, default=1024): |
|
The height in pixels of the output image |
|
width (int, default=1024): |
|
The width in pixels of the output image |
|
num_inference_steps (int, default=25): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
|
|
""" |
|
client = InferenceClient(provider="fal-ai", token=TOKEN) |
|
image = client.text_to_image( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_inference_steps, |
|
seed=seed, |
|
model="black-forest-labs/FLUX.1-dev" |
|
) |
|
return image, seed |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
demo.load(get_token, inputs=None, outputs=None) |
|
with gr.Sidebar(): |
|
gr.Markdown("# Inference Provider") |
|
gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.") |
|
button = gr.LoginButton("Sign in") |
|
button.click(fn=get_token, inputs=[], outputs=[]) |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 [schnell] with fal-ai through HF Inference Providers ⚡ |
|
learn more about HF Inference Providers [here](https://huggingface.co/docs/inference-providers/index)""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False, format="png") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = generate, |
|
inputs = [prompt], |
|
outputs = [result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = generate, |
|
inputs = [prompt, seed, width, height, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch(mcp_server=True) |