fix oauth
Browse files- app.py +31 -11
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,8 +2,11 @@ import os
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
5 |
from huggingface_hub import InferenceClient, login
|
6 |
|
|
|
|
|
7 |
MAX_SEED = np.iinfo(np.int32).max
|
8 |
MAX_IMAGE_SIZE = 2048
|
9 |
TOKEN = None
|
@@ -11,11 +14,29 @@ TOKEN = None
|
|
11 |
def get_token(oauth_token: gr.OAuthToken | None):
|
12 |
global TOKEN
|
13 |
if oauth_token and oauth_token.token:
|
|
|
14 |
TOKEN = oauth_token.token
|
15 |
else:
|
16 |
-
|
|
|
17 |
|
18 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
client = InferenceClient(provider="fal-ai", token=TOKEN)
|
20 |
image = client.text_to_image(
|
21 |
prompt=prompt,
|
@@ -41,11 +62,12 @@ css="""
|
|
41 |
"""
|
42 |
|
43 |
with gr.Blocks(css=css) as demo:
|
|
|
44 |
with gr.Sidebar():
|
45 |
gr.Markdown("# Inference Provider")
|
46 |
gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
47 |
button = gr.LoginButton("Sign in")
|
48 |
-
button.click(fn=get_token, inputs=
|
49 |
|
50 |
with gr.Column(elem_id="col-container"):
|
51 |
gr.Markdown(f"""# FLUX.1 [schnell] with fal-ai through HF Inference Providers ⚡
|
@@ -72,11 +94,9 @@ learn more about HF Inference Providers [here](https://huggingface.co/docs/infer
|
|
72 |
minimum=0,
|
73 |
maximum=MAX_SEED,
|
74 |
step=1,
|
75 |
-
value=
|
76 |
)
|
77 |
-
|
78 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
79 |
-
|
80 |
with gr.Row():
|
81 |
|
82 |
width = gr.Slider(
|
@@ -103,12 +123,12 @@ learn more about HF Inference Providers [here](https://huggingface.co/docs/infer
|
|
103 |
minimum=1,
|
104 |
maximum=50,
|
105 |
step=1,
|
106 |
-
value=
|
107 |
)
|
108 |
|
109 |
gr.Examples(
|
110 |
examples = examples,
|
111 |
-
fn =
|
112 |
inputs = [prompt],
|
113 |
outputs = [result, seed],
|
114 |
cache_examples="lazy"
|
@@ -116,8 +136,8 @@ learn more about HF Inference Providers [here](https://huggingface.co/docs/infer
|
|
116 |
|
117 |
gr.on(
|
118 |
triggers=[run_button.click, prompt.submit],
|
119 |
-
fn =
|
120 |
-
inputs = [prompt, seed,
|
121 |
outputs = [result, seed]
|
122 |
)
|
123 |
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
from dotenv import load_dotenv
|
6 |
from huggingface_hub import InferenceClient, login
|
7 |
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
MAX_SEED = np.iinfo(np.int32).max
|
11 |
MAX_IMAGE_SIZE = 2048
|
12 |
TOKEN = None
|
|
|
14 |
def get_token(oauth_token: gr.OAuthToken | None):
|
15 |
global TOKEN
|
16 |
if oauth_token and oauth_token.token:
|
17 |
+
print("Received OAuth token, logging in...")
|
18 |
TOKEN = oauth_token.token
|
19 |
else:
|
20 |
+
print("No OAuth token provided, using environment variable HF_TOKEN.")
|
21 |
+
TOKEN = os.environ.get("HF_TOKEN")
|
22 |
|
23 |
+
def generate(prompt: str, seed: int =42, width: int =1024, height: int =1024, num_inference_steps: int = 25):
|
24 |
+
"""
|
25 |
+
Generate an image from a prompt.
|
26 |
+
Args:
|
27 |
+
prompt (str):
|
28 |
+
The prompt to generate an image from.
|
29 |
+
seed (int, default=42):
|
30 |
+
Seed for the random number generator.
|
31 |
+
height (int, default=1024):
|
32 |
+
The height in pixels of the output image
|
33 |
+
width (int, default=1024):
|
34 |
+
The width in pixels of the output image
|
35 |
+
num_inference_steps (int, default=25):
|
36 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
37 |
+
expense of slower inference.
|
38 |
+
|
39 |
+
"""
|
40 |
client = InferenceClient(provider="fal-ai", token=TOKEN)
|
41 |
image = client.text_to_image(
|
42 |
prompt=prompt,
|
|
|
62 |
"""
|
63 |
|
64 |
with gr.Blocks(css=css) as demo:
|
65 |
+
demo.load(get_token, inputs=None, outputs=None)
|
66 |
with gr.Sidebar():
|
67 |
gr.Markdown("# Inference Provider")
|
68 |
gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
69 |
button = gr.LoginButton("Sign in")
|
70 |
+
button.click(fn=get_token, inputs=[], outputs=[])
|
71 |
|
72 |
with gr.Column(elem_id="col-container"):
|
73 |
gr.Markdown(f"""# FLUX.1 [schnell] with fal-ai through HF Inference Providers ⚡
|
|
|
94 |
minimum=0,
|
95 |
maximum=MAX_SEED,
|
96 |
step=1,
|
97 |
+
value=42,
|
98 |
)
|
99 |
+
|
|
|
|
|
100 |
with gr.Row():
|
101 |
|
102 |
width = gr.Slider(
|
|
|
123 |
minimum=1,
|
124 |
maximum=50,
|
125 |
step=1,
|
126 |
+
value=25,
|
127 |
)
|
128 |
|
129 |
gr.Examples(
|
130 |
examples = examples,
|
131 |
+
fn = generate,
|
132 |
inputs = [prompt],
|
133 |
outputs = [result, seed],
|
134 |
cache_examples="lazy"
|
|
|
136 |
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
+
fn = generate,
|
140 |
+
inputs = [prompt, seed, width, height, num_inference_steps],
|
141 |
outputs = [result, seed]
|
142 |
)
|
143 |
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
huggingface-hub
|
2 |
-
numpy
|
|
|
|
1 |
huggingface-hub
|
2 |
+
numpy
|
3 |
+
python-dotenv
|