video
Browse files- app.py +210 -9
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import requests
|
@@ -9,6 +10,9 @@ from dotenv import load_dotenv
|
|
9 |
from huggingface_hub import InferenceClient
|
10 |
|
11 |
|
|
|
|
|
|
|
12 |
load_dotenv()
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -39,14 +43,50 @@ def download_image_locally(image_url: str, local_path: str = "downloaded_image.p
|
|
39 |
return local_path
|
40 |
|
41 |
|
42 |
-
def login(oauth_token: gr.OAuthToken | None):
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if oauth_token and oauth_token.token:
|
45 |
-
print("Received OAuth token, logging in...")
|
46 |
TOKEN = oauth_token.token
|
47 |
else:
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
def generate(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 25):
|
@@ -78,6 +118,79 @@ def generate(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024,
|
|
78 |
return image, seed
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
examples = [
|
82 |
"a tiny astronaut hatching from an egg on the moon",
|
83 |
"a cat holding a sign that says hello world",
|
@@ -98,8 +211,14 @@ with gr.Blocks(css=css) as demo:
|
|
98 |
gr.Markdown(
|
99 |
"This Space showcases the black‑forest‑labs/FLUX.1‑dev model, served by the nebius API. Sign in with your Hugging Face account to use this API."
|
100 |
)
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
with gr.Column(elem_id="col-container"):
|
104 |
gr.Markdown(
|
105 |
"""# FLUX.1 [schnell] with fal‑ai through HF Inference Providers ⚡\nLearn more about HF Inference Providers [here](https://huggingface.co/docs/inference-providers/index)"""
|
@@ -115,9 +234,9 @@ with gr.Blocks(css=css) as demo:
|
|
115 |
)
|
116 |
run_button = gr.Button("Run", scale=0)
|
117 |
|
118 |
-
result = gr.Image(label="
|
119 |
download_btn = gr.DownloadButton(
|
120 |
-
label="Download result",
|
121 |
visible=False,
|
122 |
value=None,
|
123 |
variant="primary",
|
@@ -164,12 +283,94 @@ with gr.Blocks(css=css) as demo:
|
|
164 |
cache_examples="lazy",
|
165 |
)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
run_button.click(
|
168 |
fn=generate,
|
169 |
inputs=[prompt, seed_slider, width_slider, height_slider, steps_slider],
|
170 |
outputs=[result, seed_number],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
with gr.Accordion("Download Image from URL", open=False):
|
174 |
image_url_input = gr.Text(label="Image URL", placeholder="Enter image URL (e.g., http://.../image.png)")
|
175 |
filename_input = gr.Text(
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
|
4 |
+
import fal_client
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import requests
|
|
|
10 |
from huggingface_hub import InferenceClient
|
11 |
|
12 |
|
13 |
+
FAL_KEY = os.environ.get("FAL_KEY") # Load FAL_KEY
|
14 |
+
|
15 |
+
|
16 |
load_dotenv()
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
43 |
return local_path
|
44 |
|
45 |
|
46 |
+
def login(oauth_token: gr.OAuthToken | None, fal_key_from_ui: str | None):
|
47 |
+
"""
|
48 |
+
Login to Hugging Face and FAL.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
oauth_token (gr.OAuthToken | None): The OAuth token from Hugging Face.
|
52 |
+
fal_key_from_ui (str | None): The FAL key from the UI.
|
53 |
+
"""
|
54 |
+
global TOKEN, FAL_KEY
|
55 |
+
|
56 |
if oauth_token and oauth_token.token:
|
57 |
+
print("Received OAuth token, logging in for Hugging Face...")
|
58 |
TOKEN = oauth_token.token
|
59 |
else:
|
60 |
+
env_hf_token = os.environ.get("HF_TOKEN")
|
61 |
+
if env_hf_token:
|
62 |
+
TOKEN = env_hf_token
|
63 |
+
print("Using environment variable HF_TOKEN for Hugging Face.")
|
64 |
+
else:
|
65 |
+
print("No Hugging Face OAuth token received and HF_TOKEN environment variable not set.")
|
66 |
+
|
67 |
+
if fal_key_from_ui and fal_key_from_ui.strip():
|
68 |
+
FAL_KEY = fal_key_from_ui.strip()
|
69 |
+
elif os.environ.get("FAL_KEY"):
|
70 |
+
if FAL_KEY == os.environ.get("FAL_KEY"):
|
71 |
+
print("Using FAL_KEY from environment variable.")
|
72 |
+
else:
|
73 |
+
FAL_KEY = os.environ.get("FAL_KEY")
|
74 |
+
print("Using FAL_KEY from environment variable (UI input was blank).")
|
75 |
+
gr.Info("FAL_KEY has been set from environment variable.")
|
76 |
+
|
77 |
+
else:
|
78 |
+
print("FAL_KEY not provided in UI or environment.")
|
79 |
+
FAL_KEY = None
|
80 |
+
|
81 |
+
if not TOKEN:
|
82 |
+
gr.Warning("Hugging Face token not set. Image generation via HF Inference Providers might fail.")
|
83 |
+
else:
|
84 |
+
gr.Info("Hugging Face token is configured.")
|
85 |
+
|
86 |
+
if not FAL_KEY:
|
87 |
+
gr.Warning("FAL_KEY not set. Video generation will not work.")
|
88 |
+
else:
|
89 |
+
gr.Info("FAL_KEY is configured.")
|
90 |
|
91 |
|
92 |
def generate(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 25):
|
|
|
118 |
return image, seed
|
119 |
|
120 |
|
121 |
+
def generate_video_from_image(
|
122 |
+
image_filepath: str, # This will be the path to the image from gr.Image output
|
123 |
+
video_prompt: str,
|
124 |
+
duration: str, # "5" or "10"
|
125 |
+
aspect_ratio: str, # "16:9", "9:16", "1:1"
|
126 |
+
video_negative_prompt: str,
|
127 |
+
cfg_scale_video: float,
|
128 |
+
progress=gr.Progress(track_tqdm=True),
|
129 |
+
):
|
130 |
+
"""
|
131 |
+
Generates a video from an image using fal-ai/kling-video API.
|
132 |
+
"""
|
133 |
+
if not FAL_KEY:
|
134 |
+
gr.Error("FAL_KEY is not set. Cannot generate video.")
|
135 |
+
return None
|
136 |
+
if not image_filepath:
|
137 |
+
gr.Warning("No image provided to generate video from.")
|
138 |
+
return None
|
139 |
+
if not os.path.exists(image_filepath):
|
140 |
+
gr.Error(f"Image file not found at: {image_filepath}")
|
141 |
+
return None
|
142 |
+
|
143 |
+
print(f"Video generation started for image: {image_filepath}")
|
144 |
+
progress(0, desc="Preparing for video generation...")
|
145 |
+
|
146 |
+
try:
|
147 |
+
progress(0.1, desc="Uploading image...")
|
148 |
+
print("Uploading image to fal.ai storage...")
|
149 |
+
image_url = fal_client.upload_file(image_filepath)
|
150 |
+
print(f"Image uploaded, URL: {image_url}")
|
151 |
+
progress(0.3, desc="Image uploaded. Submitting video request...")
|
152 |
+
|
153 |
+
def on_queue_update(update):
|
154 |
+
if isinstance(update, fal_client.InProgress):
|
155 |
+
if update.logs:
|
156 |
+
for log in update.logs:
|
157 |
+
print(f"[fal-ai log] {log['message']}")
|
158 |
+
# Try to update progress description if logs are available
|
159 |
+
# progress(progress.current_progress_value, desc=f"Video processing: {log['message'][:50]}...")
|
160 |
+
|
161 |
+
print("Subscribing to fal-ai/kling-video/v2.1/master/image-to-video...")
|
162 |
+
api_result = fal_client.subscribe(
|
163 |
+
"fal-ai/kling-video/v2.1/master/image-to-video",
|
164 |
+
arguments={
|
165 |
+
"prompt": video_prompt,
|
166 |
+
"image_url": image_url,
|
167 |
+
"duration": duration,
|
168 |
+
"aspect_ratio": aspect_ratio,
|
169 |
+
"negative_prompt": video_negative_prompt,
|
170 |
+
"cfg_scale": cfg_scale_video,
|
171 |
+
},
|
172 |
+
with_logs=True, # Get logs
|
173 |
+
on_queue_update=on_queue_update, # Callback for logs
|
174 |
+
)
|
175 |
+
|
176 |
+
progress(0.9, desc="Video processing complete.")
|
177 |
+
video_output_url = api_result.get("video", {}).get("url")
|
178 |
+
|
179 |
+
if video_output_url:
|
180 |
+
print(f"Video generated successfully: {video_output_url}")
|
181 |
+
progress(1, desc="Video ready!")
|
182 |
+
return video_output_url
|
183 |
+
else:
|
184 |
+
print(f"Video generation failed or no URL in response. API Result: {api_result}")
|
185 |
+
gr.Error("Video generation failed or no video URL returned.")
|
186 |
+
return None
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
print(f"Error during video generation: {e}")
|
190 |
+
gr.Error(f"An error occurred: {str(e)}")
|
191 |
+
return None
|
192 |
+
|
193 |
+
|
194 |
examples = [
|
195 |
"a tiny astronaut hatching from an egg on the moon",
|
196 |
"a cat holding a sign that says hello world",
|
|
|
211 |
gr.Markdown(
|
212 |
"This Space showcases the black‑forest‑labs/FLUX.1‑dev model, served by the nebius API. Sign in with your Hugging Face account to use this API."
|
213 |
)
|
214 |
+
hf_login_button = gr.LoginButton("Sign in")
|
215 |
+
fal_key_input = gr.Textbox(
|
216 |
+
label="FAL_KEY",
|
217 |
+
placeholder="Enter your FAL API Key here",
|
218 |
+
type="password",
|
219 |
+
value=FAL_KEY if FAL_KEY else "", # Pre-fill if loaded from env
|
220 |
+
)
|
221 |
+
hf_login_button.click(fn=login, inputs=[hf_login_button, fal_key_input], outputs=None)
|
222 |
with gr.Column(elem_id="col-container"):
|
223 |
gr.Markdown(
|
224 |
"""# FLUX.1 [schnell] with fal‑ai through HF Inference Providers ⚡\nLearn more about HF Inference Providers [here](https://huggingface.co/docs/inference-providers/index)"""
|
|
|
234 |
)
|
235 |
run_button = gr.Button("Run", scale=0)
|
236 |
|
237 |
+
result = gr.Image(label="Generated Image", show_label=False, format="png", type="filepath")
|
238 |
download_btn = gr.DownloadButton(
|
239 |
+
label="Download result image",
|
240 |
visible=False,
|
241 |
value=None,
|
242 |
variant="primary",
|
|
|
283 |
cache_examples="lazy",
|
284 |
)
|
285 |
|
286 |
+
def update_image_outputs(image_pil, seed_val):
|
287 |
+
return {
|
288 |
+
result: image_pil,
|
289 |
+
seed_number: seed_val,
|
290 |
+
download_btn: gr.DownloadButton(value=image_pil, visible=True)
|
291 |
+
if image_pil
|
292 |
+
else gr.DownloadButton(visible=False),
|
293 |
+
}
|
294 |
+
|
295 |
run_button.click(
|
296 |
fn=generate,
|
297 |
inputs=[prompt, seed_slider, width_slider, height_slider, steps_slider],
|
298 |
outputs=[result, seed_number],
|
299 |
+
).then(
|
300 |
+
lambda img_path, vid_accordion, vid_btn: { # Make video section interactive
|
301 |
+
vid_accordion: gr.Accordion(open=True, interactive=True),
|
302 |
+
vid_btn: gr.Button(interactive=True),
|
303 |
+
},
|
304 |
+
inputs=[result],
|
305 |
+
outputs=[],
|
306 |
+
)
|
307 |
+
|
308 |
+
video_result_output = gr.Video(label="Generated Video", show_label=False)
|
309 |
+
|
310 |
+
with gr.Accordion("Video Generation from Image", open=False, interactive=False) as video_gen_accordion:
|
311 |
+
video_prompt_input = gr.Text(
|
312 |
+
label="Prompt for Video",
|
313 |
+
placeholder="Describe the animation or changes for the video (e.g., 'camera zooms out slowly')",
|
314 |
+
value="A gentle breeze rustles the leaves, subtle camera movement.", # Default prompt
|
315 |
+
)
|
316 |
+
with gr.Row():
|
317 |
+
video_duration_input = gr.Dropdown(label="Duration (seconds)", choices=["5", "10"], value="5")
|
318 |
+
video_aspect_ratio_input = gr.Dropdown(
|
319 |
+
label="Aspect Ratio",
|
320 |
+
choices=["16:9", "9:16", "1:1"],
|
321 |
+
value="16:9", # Default from API
|
322 |
+
)
|
323 |
+
video_negative_prompt_input = gr.Text(
|
324 |
+
label="Negative Prompt for Video",
|
325 |
+
value="blur, distort, low quality", # Default from API
|
326 |
+
)
|
327 |
+
video_cfg_scale_input = gr.Slider(
|
328 |
+
label="CFG Scale for Video",
|
329 |
+
minimum=0.0,
|
330 |
+
maximum=10.0,
|
331 |
+
value=0.5,
|
332 |
+
step=0.1, # Default from API (0.5 seems low, API docs mention it, let's check if it's a typo or specific to this model)
|
333 |
+
)
|
334 |
+
generate_video_btn = gr.Button("Generate Video", interactive=False)
|
335 |
+
|
336 |
+
# Update the run_button.click().then() to target these video components
|
337 |
+
# We need to define them first, so I'm moving the .then() part of run_button here.
|
338 |
+
# This is a bit tricky with Gradio's sequential definition. Let's re-organize slightly.
|
339 |
+
|
340 |
+
# The previous run_button.click had a .then() that needs video_gen_accordion and generate_video_btn
|
341 |
+
# We'll chain it properly after these are defined.
|
342 |
+
|
343 |
+
generate_video_btn.click(
|
344 |
+
fn=generate_video_from_image,
|
345 |
+
inputs=[
|
346 |
+
result, # This is the gr.Image component, its output (filepath) will be passed
|
347 |
+
video_prompt_input,
|
348 |
+
video_duration_input,
|
349 |
+
video_aspect_ratio_input,
|
350 |
+
video_negative_prompt_input,
|
351 |
+
video_cfg_scale_input,
|
352 |
+
],
|
353 |
+
outputs=[video_result_output],
|
354 |
)
|
355 |
|
356 |
+
# Now, correctly chain the .then() for the image generation button
|
357 |
+
run_button.click(
|
358 |
+
fn=generate,
|
359 |
+
inputs=[prompt, seed_slider, width_slider, height_slider, steps_slider],
|
360 |
+
outputs=[result, seed_number],
|
361 |
+
).then(
|
362 |
+
# This function will run after 'generate' and will update the UI
|
363 |
+
# It receives the outputs of 'generate' as its inputs.
|
364 |
+
# We use `result` (the gr.Image component's output which is a filepath)
|
365 |
+
# to enable the video section.
|
366 |
+
lambda image_filepath: { # image_filepath will be the path from the `result` gr.Image
|
367 |
+
video_gen_accordion: gr.Accordion(open=True, interactive=True if image_filepath else False),
|
368 |
+
generate_video_btn: gr.Button(interactive=True if image_filepath else False),
|
369 |
+
download_btn: gr.DownloadButton(value=image_filepath, visible=True if image_filepath else False),
|
370 |
+
},
|
371 |
+
inputs=[result], # Input to this lambda is the output of `result` (gr.Image)
|
372 |
+
outputs=[video_gen_accordion, generate_video_btn, download_btn],
|
373 |
+
)
|
374 |
with gr.Accordion("Download Image from URL", open=False):
|
375 |
image_url_input = gr.Text(label="Image URL", placeholder="Enter image URL (e.g., http://.../image.png)")
|
376 |
filename_input = gr.Text(
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
huggingface-hub
|
2 |
numpy
|
3 |
-
python-dotenv
|
|
|
|
1 |
huggingface-hub
|
2 |
numpy
|
3 |
+
python-dotenv
|
4 |
+
fal-client
|