import traceback import streamlit as st import os from app.config import config from app.utils import utils from loguru import logger def render_basic_settings(tr): """渲染基础设置面板""" with st.expander(tr("Basic Settings"), expanded=False): config_panels = st.columns(3) left_config_panel = config_panels[0] middle_config_panel = config_panels[1] right_config_panel = config_panels[2] with left_config_panel: render_language_settings(tr) render_proxy_settings(tr) with middle_config_panel: render_vision_llm_settings(tr) # 视频分析模型设置 with right_config_panel: render_text_llm_settings(tr) # 文案生成模型设置 def render_language_settings(tr): st.subheader(tr("Proxy Settings")) """渲染语言设置""" system_locale = utils.get_system_locale() i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n") locales = utils.load_locales(i18n_dir) display_languages = [] selected_index = 0 for i, code in enumerate(locales.keys()): display_languages.append(f"{code} - {locales[code].get('Language')}") if code == st.session_state.get('ui_language', system_locale): selected_index = i selected_language = st.selectbox( tr("Language"), options=display_languages, index=selected_index ) if selected_language: code = selected_language.split(" - ")[0].strip() st.session_state['ui_language'] = code config.ui['language'] = code def render_proxy_settings(tr): """渲染代理设置""" # 获取当前代理状态 proxy_enabled = config.proxy.get("enabled", False) proxy_url_http = config.proxy.get("http") proxy_url_https = config.proxy.get("https") # 添加代理开关 proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled) # 保存代理开关状态 # config.proxy["enabled"] = proxy_enabled # 只有在代理启用时才显示代理设置输入框 if proxy_enabled: HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http) HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https) if HTTP_PROXY and HTTPS_PROXY: config.proxy["http"] = HTTP_PROXY config.proxy["https"] = HTTPS_PROXY os.environ["HTTP_PROXY"] = HTTP_PROXY os.environ["HTTPS_PROXY"] = HTTPS_PROXY # logger.debug(f"代理已启用: {HTTP_PROXY}") else: # 当代理被禁用时,清除环境变量和配置 os.environ.pop("HTTP_PROXY", None) os.environ.pop("HTTPS_PROXY", None) # config.proxy["http"] = "" # config.proxy["https"] = "" def test_vision_model_connection(api_key, base_url, model_name, provider, tr): """测试视觉模型连接 Args: api_key: API密钥 base_url: 基础URL model_name: 模型名称 provider: 提供商名称 Returns: bool: 连接是否成功 str: 测试结果消息 """ if provider.lower() == 'gemini': import google.generativeai as genai try: genai.configure(api_key=api_key) model = genai.GenerativeModel(model_name) model.generate_content("直接回复我文本'当前网络可用'") return True, tr("gemini model is available") except Exception as e: return False, f"{tr('gemini model is not available')}: {str(e)}" elif provider.lower() == 'narratoapi': import requests try: # 构建测试请求 headers = { "Authorization": f"Bearer {api_key}" } test_url = f"{base_url.rstrip('/')}/health" response = requests.get(test_url, headers=headers, timeout=10) if response.status_code == 200: return True, tr("NarratoAPI is available") else: return False, f"{tr('NarratoAPI is not available')}: HTTP {response.status_code}" except Exception as e: return False, f"{tr('NarratoAPI is not available')}: {str(e)}" else: from openai import OpenAI try: client = OpenAI( api_key=api_key, base_url=base_url, ) response = client.chat.completions.create( model=model_name, messages=[ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}], }, { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg" }, }, {"type": "text", "text": "回复我网络可用即可"}, ], }, ], ) if response and response.choices: return True, tr("QwenVL model is available") else: return False, tr("QwenVL model returned invalid response") except Exception as e: # logger.debug(api_key) # logger.debug(base_url) # logger.debug(model_name) return False, f"{tr('QwenVL model is not available')}: {str(e)}" def render_vision_llm_settings(tr): """渲染视频分析模型设置""" st.subheader(tr("Vision Model Settings")) # 视频分析模型提供商选择 vision_providers = ['Siliconflow', 'Gemini', 'QwenVL', 'OpenAI'] saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower() saved_provider_index = 0 for i, provider in enumerate(vision_providers): if provider.lower() == saved_vision_provider: saved_provider_index = i break vision_provider = st.selectbox( tr("Vision Model Provider"), options=vision_providers, index=saved_provider_index ) vision_provider = vision_provider.lower() config.app["vision_llm_provider"] = vision_provider st.session_state['vision_llm_providers'] = vision_provider # 获取已保存的视觉模型配置 vision_api_key = config.app.get(f"vision_{vision_provider}_api_key", "") vision_base_url = config.app.get(f"vision_{vision_provider}_base_url", "") vision_model_name = config.app.get(f"vision_{vision_provider}_model_name", "") # 渲染视觉模型配置输入框 st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password") # 根据不同提供商设置默认值和帮助信息 if vision_provider == 'gemini': st_vision_base_url = st.text_input( tr("Vision Base URL"), value=vision_base_url, disabled=True, help=tr("Gemini API does not require a base URL") ) st_vision_model_name = st.text_input( tr("Vision Model Name"), value=vision_model_name or "gemini-2.0-flash-lite", help=tr("Default: gemini-2.0-flash-lite") ) elif vision_provider == 'qwenvl': st_vision_base_url = st.text_input( tr("Vision Base URL"), value=vision_base_url, help=tr("Default: https://dashscope.aliyuncs.com/compatible-mode/v1") ) st_vision_model_name = st.text_input( tr("Vision Model Name"), value=vision_model_name or "qwen-vl-max-latest", help=tr("Default: qwen-vl-max-latest") ) else: st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url) st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name) # 在配置输入框后添加测试按钮 if st.button(tr("Test Connection"), key="test_vision_connection"): with st.spinner(tr("Testing connection...")): success, message = test_vision_model_connection( api_key=st_vision_api_key, base_url=st_vision_base_url, model_name=st_vision_model_name, provider=vision_provider, tr=tr ) if success: st.success(tr(message)) else: st.error(tr(message)) # 保存视觉模型配置 if st_vision_api_key: config.app[f"vision_{vision_provider}_api_key"] = st_vision_api_key st.session_state[f"vision_{vision_provider}_api_key"] = st_vision_api_key if st_vision_base_url: config.app[f"vision_{vision_provider}_base_url"] = st_vision_base_url st.session_state[f"vision_{vision_provider}_base_url"] = st_vision_base_url if st_vision_model_name: config.app[f"vision_{vision_provider}_model_name"] = st_vision_model_name st.session_state[f"vision_{vision_provider}_model_name"] = st_vision_model_name def test_text_model_connection(api_key, base_url, model_name, provider, tr): """测试文本模型连接 Args: api_key: API密钥 base_url: 基础URL model_name: 模型名称 provider: 提供商名称 Returns: bool: 连接是否成功 str: 测试结果消息 """ import requests try: # 构建统一的测试请求(遵循OpenAI格式) headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } # 特殊处理Gemini if provider.lower() == 'gemini': import google.generativeai as genai try: genai.configure(api_key=api_key) model = genai.GenerativeModel(model_name) model.generate_content("直接回复我文本'当前网络可用'") return True, tr("Gemini model is available") except Exception as e: return False, f"{tr('Gemini model is not available')}: {str(e)}" else: test_url = f"{base_url.rstrip('/')}/chat/completions" # 构建测试消息 test_data = { "model": model_name, "messages": [ {"role": "user", "content": "直接回复我文本'当前网络可用'"} ], "stream": False } # 发送测试请求 response = requests.post( test_url, headers=headers, json=test_data, ) # logger.debug(model_name) # logger.debug(api_key) # logger.debug(test_url) if response.status_code == 200: return True, tr("Text model is available") else: return False, f"{tr('Text model is not available')}: HTTP {response.status_code}" except Exception as e: logger.error(traceback.format_exc()) return False, f"{tr('Connection failed')}: {str(e)}" def render_text_llm_settings(tr): """渲染文案生成模型设置""" st.subheader(tr("Text Generation Model Settings")) # 文案生成模型提供商选择 text_providers = ['OpenAI', 'Siliconflow', 'DeepSeek', 'Gemini', 'Qwen', 'Moonshot'] saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower() saved_provider_index = 0 for i, provider in enumerate(text_providers): if provider.lower() == saved_text_provider: saved_provider_index = i break text_provider = st.selectbox( tr("Text Model Provider"), options=text_providers, index=saved_provider_index ) text_provider = text_provider.lower() config.app["text_llm_provider"] = text_provider # 获取已保存的文本模型配置 text_api_key = config.app.get(f"text_{text_provider}_api_key") text_base_url = config.app.get(f"text_{text_provider}_base_url") text_model_name = config.app.get(f"text_{text_provider}_model_name") # 渲染文本模型配置输入框 st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password") st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url) st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name) # 添加测试按钮 if st.button(tr("Test Connection"), key="test_text_connection"): with st.spinner(tr("Testing connection...")): success, message = test_text_model_connection( api_key=st_text_api_key, base_url=st_text_base_url, model_name=st_text_model_name, provider=text_provider, tr=tr ) if success: st.success(message) else: st.error(message) # 保存文本模型配置 if st_text_api_key: config.app[f"text_{text_provider}_api_key"] = st_text_api_key if st_text_base_url: config.app[f"text_{text_provider}_base_url"] = st_text_base_url if st_text_model_name: config.app[f"text_{text_provider}_model_name"] = st_text_model_name # # Cloudflare 特殊配置 # if text_provider == 'cloudflare': # st_account_id = st.text_input( # tr("Account ID"), # value=config.app.get(f"text_{text_provider}_account_id", "") # ) # if st_account_id: # config.app[f"text_{text_provider}_account_id"] = st_account_id