Spaces:
Running
Running
File size: 18,048 Bytes
5690e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
#!/usr/bin/env python3
#
# Copyright (c) 2023 Xiaomi Corporation
"""
This file demonstrates how to use sherpa-onnx Python APIs to generate
subtitles.
Supported file formats are those supported by ffmpeg; for instance,
*.mov, *.mp4, *.wav, etc.
Note that you need a non-streaming model for this script.
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
(1) For paraformer
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/paraformer.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
--sample-rate=16000 \
--feature-dim=80 \
/path/to/test.mp4
(2) For transducer models from icefall
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
--sample-rate=16000 \
--feature-dim=80 \
/path/to/test.mp4
(3) For Moonshine models
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--moonshine-preprocessor=./sherpa-onnx-moonshine-tiny-en-int8/preprocess.onnx \
--moonshine-encoder=./sherpa-onnx-moonshine-tiny-en-int8/encode.int8.onnx \
--moonshine-uncached-decoder=./sherpa-onnx-moonshine-tiny-en-int8/uncached_decode.int8.onnx \
--moonshine-cached-decoder=./sherpa-onnx-moonshine-tiny-en-int8/cached_decode.int8.onnx \
--tokens=./sherpa-onnx-moonshine-tiny-en-int8/tokens.txt \
--num-threads=2 \
/path/to/test.mp4
(4) For Whisper models
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--whisper-task=transcribe \
--num-threads=2 \
/path/to/test.mp4
(5) For SenseVoice CTC models
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--sense-voice=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
--tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
--num-threads=2 \
/path/to/test.mp4
(6) For WeNet CTC models
./python-api-examples/generate-subtitles.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model.onnx \
--tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
--num-threads=2 \
/path/to/test.mp4
Please refer to
https://k2-fsa.github.io/sherpa/onnx/index.html
to install sherpa-onnx and to download non-streaming pre-trained models
used in this file.
"""
import argparse
import datetime as dt
import shutil
import subprocess
import sys
from dataclasses import dataclass
from datetime import timedelta
from pathlib import Path
import numpy as np
import sherpa_onnx
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
default="",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
default="",
type=str,
help="Path to the transducer decoder model",
)
parser.add_argument(
"--joiner",
default="",
type=str,
help="Path to the transducer joiner model",
)
parser.add_argument(
"--paraformer",
default="",
type=str,
help="Path to the model.onnx from Paraformer",
)
parser.add_argument(
"--sense-voice",
default="",
type=str,
help="Path to the model.onnx from SenseVoice",
)
parser.add_argument(
"--wenet-ctc",
default="",
type=str,
help="Path to the CTC model.onnx from WeNet",
)
parser.add_argument(
"--num-threads",
type=int,
default=2,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--whisper-encoder",
default="",
type=str,
help="Path to whisper encoder model",
)
parser.add_argument(
"--whisper-decoder",
default="",
type=str,
help="Path to whisper decoder model",
)
parser.add_argument(
"--whisper-language",
default="",
type=str,
help="""It specifies the spoken language in the input file.
Example values: en, fr, de, zh, jp.
Available languages for multilingual models can be found at
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
If not specified, we infer the language from the input audio file.
""",
)
parser.add_argument(
"--whisper-task",
default="transcribe",
choices=["transcribe", "translate"],
type=str,
help="""For multilingual models, if you specify translate, the output
will be in English.
""",
)
parser.add_argument(
"--whisper-tail-paddings",
default=-1,
type=int,
help="""Number of tail padding frames.
We have removed the 30-second constraint from whisper, so you need to
choose the amount of tail padding frames by yourself.
Use -1 to use a default value for tail padding.
""",
)
parser.add_argument(
"--moonshine-preprocessor",
default="",
type=str,
help="Path to moonshine preprocessor model",
)
parser.add_argument(
"--moonshine-encoder",
default="",
type=str,
help="Path to moonshine encoder model",
)
parser.add_argument(
"--moonshine-uncached-decoder",
default="",
type=str,
help="Path to moonshine uncached decoder model",
)
parser.add_argument(
"--moonshine-cached-decoder",
default="",
type=str,
help="Path to moonshine cached decoder model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Valid values are greedy_search and modified_beam_search.
modified_beam_search is valid only for transducer models.
""",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages when loading modes.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="""Sample rate of the feature extractor. Must match the one
expected by the model. Note: The input sound files can have a
different sample rate from this argument.""",
)
parser.add_argument(
"--feature-dim",
type=int,
default=80,
help="Feature dimension. Must match the one expected by the model",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to generate subtitles ",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
if args.encoder:
assert len(args.paraformer) == 0, args.paraformer
assert len(args.sense_voice) == 0, args.sense_voice
assert len(args.wenet_ctc) == 0, args.wenet_ctc
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.paraformer:
assert len(args.sense_voice) == 0, args.sense_voice
assert len(args.wenet_ctc) == 0, args.wenet_ctc
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.paraformer)
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=args.paraformer,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.sense_voice:
assert len(args.wenet_ctc) == 0, args.wenet_ctc
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.sense_voice)
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=args.sense_voice,
tokens=args.tokens,
num_threads=args.num_threads,
use_itn=True,
debug=args.debug,
)
elif args.wenet_ctc:
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
assert_file_exists(args.wenet_ctc)
recognizer = sherpa_onnx.OfflineRecognizer.from_wenet_ctc(
model=args.wenet_ctc,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.whisper_encoder:
assert_file_exists(args.whisper_encoder)
assert_file_exists(args.whisper_decoder)
assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
assert (
len(args.moonshine_uncached_decoder) == 0
), args.moonshine_uncached_decoder
assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=args.whisper_encoder,
decoder=args.whisper_decoder,
tokens=args.tokens,
num_threads=args.num_threads,
decoding_method=args.decoding_method,
debug=args.debug,
language=args.whisper_language,
task=args.whisper_task,
tail_paddings=args.whisper_tail_paddings,
)
elif args.moonshine_preprocessor:
assert_file_exists(args.moonshine_preprocessor)
assert_file_exists(args.moonshine_encoder)
assert_file_exists(args.moonshine_uncached_decoder)
assert_file_exists(args.moonshine_cached_decoder)
recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine(
preprocessor=args.moonshine_preprocessor,
encoder=args.moonshine_encoder,
uncached_decoder=args.moonshine_uncached_decoder,
cached_decoder=args.moonshine_cached_decoder,
tokens=args.tokens,
num_threads=args.num_threads,
decoding_method=args.decoding_method,
debug=args.debug,
)
else:
raise ValueError("Please specify at least one model")
return recognizer
@dataclass
class Segment:
start: float
duration: float
text: str = ""
@property
def end(self):
return self.start + self.duration
def __str__(self):
s = f"{timedelta(seconds=self.start)}"[:-3]
s += " --> "
s += f"{timedelta(seconds=self.end)}"[:-3]
s = s.replace(".", ",")
s += "\n"
s += self.text
return s
def main():
args = get_args()
assert_file_exists(args.tokens)
assert_file_exists(args.silero_vad_model)
assert args.num_threads > 0, args.num_threads
if not Path(args.sound_file).is_file():
raise ValueError(f"{args.sound_file} does not exist")
assert (
args.sample_rate == 16000
), f"Only sample rate 16000 is supported.Given: {args.sample_rate}"
recognizer = create_recognizer(args)
ffmpeg_cmd = [
"ffmpeg",
"-i",
args.sound_file,
"-f",
"s16le",
"-acodec",
"pcm_s16le",
"-ac",
"1",
"-ar",
str(args.sample_rate),
"-",
]
process = subprocess.Popen(
ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
)
frames_per_read = int(args.sample_rate * 100) # 100 second
stream = recognizer.create_stream()
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.25 # seconds
config.silero_vad.min_speech_duration = 0.25 # seconds
# If the current segment is larger than this value, then it increases
# the threshold to 0.9 internally. After detecting this segment,
# it resets the threshold to its original value.
config.silero_vad.max_speech_duration = 5 # seconds
config.sample_rate = args.sample_rate
window_size = config.silero_vad.window_size
buffer = []
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)
segment_list = []
print("Started!")
start_t = dt.datetime.now()
num_processed_samples = 0
is_eof = False
# TODO(fangjun): Support multithreads
while not is_eof:
# *2 because int16_t has two bytes
data = process.stdout.read(frames_per_read * 2)
if not data:
vad.flush()
is_eof = True
else:
samples = np.frombuffer(data, dtype=np.int16)
samples = samples.astype(np.float32) / 32768
num_processed_samples += samples.shape[0]
buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]
streams = []
segments = []
while not vad.empty():
segment = Segment(
start=vad.front.start / args.sample_rate,
duration=len(vad.front.samples) / args.sample_rate,
)
segments.append(segment)
stream = recognizer.create_stream()
stream.accept_waveform(args.sample_rate, vad.front.samples)
streams.append(stream)
vad.pop()
for s in streams:
recognizer.decode_stream(s)
for seg, stream in zip(segments, streams):
seg.text = stream.result.text
segment_list.append(seg)
end_t = dt.datetime.now()
elapsed_seconds = (end_t - start_t).total_seconds()
duration = num_processed_samples / 16000
rtf = elapsed_seconds / duration
srt_filename = Path(args.sound_file).with_suffix(".srt")
with open(srt_filename, "w", encoding="utf-8") as f:
for i, seg in enumerate(segment_list):
print(i + 1, file=f)
print(seg, file=f)
print("", file=f)
print(f"Saved to {srt_filename}")
print(f"Audio duration:\t{duration:.3f} s")
print(f"Elapsed:\t{elapsed_seconds:.3f} s")
print(f"RTF = {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}")
print("Done!")
if __name__ == "__main__":
if shutil.which("ffmpeg") is None:
sys.exit("Please install ffmpeg first!")
main()
|