File size: 18,048 Bytes
5690e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#!/usr/bin/env python3
#
# Copyright (c)  2023  Xiaomi Corporation

"""
This file demonstrates how to use sherpa-onnx Python APIs to generate
subtitles.

Supported file formats are those supported by ffmpeg; for instance,
*.mov, *.mp4, *.wav, etc.

Note that you need a non-streaming model for this script.

Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
to download silero_vad.onnx

For instance,

wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx

(1) For paraformer

    ./python-api-examples/generate-subtitles.py  \
      --silero-vad-model=/path/to/silero_vad.onnx \
      --tokens=/path/to/tokens.txt \
      --paraformer=/path/to/paraformer.onnx \
      --num-threads=2 \
      --decoding-method=greedy_search \
      --debug=false \
      --sample-rate=16000 \
      --feature-dim=80 \
      /path/to/test.mp4

(2) For transducer models from icefall

    ./python-api-examples/generate-subtitles.py  \
      --silero-vad-model=/path/to/silero_vad.onnx \
      --tokens=/path/to/tokens.txt \
      --encoder=/path/to/encoder.onnx \
      --decoder=/path/to/decoder.onnx \
      --joiner=/path/to/joiner.onnx \
      --num-threads=2 \
      --decoding-method=greedy_search \
      --debug=false \
      --sample-rate=16000 \
      --feature-dim=80 \
      /path/to/test.mp4

(3) For Moonshine models

./python-api-examples/generate-subtitles.py  \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --moonshine-preprocessor=./sherpa-onnx-moonshine-tiny-en-int8/preprocess.onnx \
  --moonshine-encoder=./sherpa-onnx-moonshine-tiny-en-int8/encode.int8.onnx \
  --moonshine-uncached-decoder=./sherpa-onnx-moonshine-tiny-en-int8/uncached_decode.int8.onnx \
  --moonshine-cached-decoder=./sherpa-onnx-moonshine-tiny-en-int8/cached_decode.int8.onnx \
  --tokens=./sherpa-onnx-moonshine-tiny-en-int8/tokens.txt \
  --num-threads=2 \
  /path/to/test.mp4

(4) For Whisper models

./python-api-examples/generate-subtitles.py  \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
  --whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
  --tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
  --whisper-task=transcribe \
  --num-threads=2 \
  /path/to/test.mp4

(5) For SenseVoice CTC models

./python-api-examples/generate-subtitles.py  \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --sense-voice=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.onnx \
  --tokens=./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt \
  --num-threads=2 \
  /path/to/test.mp4


(6) For WeNet CTC models

./python-api-examples/generate-subtitles.py  \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model.onnx \
  --tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
  --num-threads=2 \
  /path/to/test.mp4

Please refer to
https://k2-fsa.github.io/sherpa/onnx/index.html
to install sherpa-onnx and to download non-streaming pre-trained models
used in this file.
"""
import argparse
import datetime as dt
import shutil
import subprocess
import sys
from dataclasses import dataclass
from datetime import timedelta
from pathlib import Path

import numpy as np
import sherpa_onnx


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--silero-vad-model",
        type=str,
        required=True,
        help="Path to silero_vad.onnx",
    )

    parser.add_argument(
        "--tokens",
        type=str,
        help="Path to tokens.txt",
    )

    parser.add_argument(
        "--encoder",
        default="",
        type=str,
        help="Path to the transducer encoder model",
    )

    parser.add_argument(
        "--decoder",
        default="",
        type=str,
        help="Path to the transducer decoder model",
    )

    parser.add_argument(
        "--joiner",
        default="",
        type=str,
        help="Path to the transducer joiner model",
    )

    parser.add_argument(
        "--paraformer",
        default="",
        type=str,
        help="Path to the model.onnx from Paraformer",
    )

    parser.add_argument(
        "--sense-voice",
        default="",
        type=str,
        help="Path to the model.onnx from SenseVoice",
    )

    parser.add_argument(
        "--wenet-ctc",
        default="",
        type=str,
        help="Path to the CTC model.onnx from WeNet",
    )

    parser.add_argument(
        "--num-threads",
        type=int,
        default=2,
        help="Number of threads for neural network computation",
    )

    parser.add_argument(
        "--whisper-encoder",
        default="",
        type=str,
        help="Path to whisper encoder model",
    )

    parser.add_argument(
        "--whisper-decoder",
        default="",
        type=str,
        help="Path to whisper decoder model",
    )

    parser.add_argument(
        "--whisper-language",
        default="",
        type=str,
        help="""It specifies the spoken language in the input file.
        Example values: en, fr, de, zh, jp.
        Available languages for multilingual models can be found at
        https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
        If not specified, we infer the language from the input audio file.
        """,
    )

    parser.add_argument(
        "--whisper-task",
        default="transcribe",
        choices=["transcribe", "translate"],
        type=str,
        help="""For multilingual models, if you specify translate, the output
        will be in English.
        """,
    )

    parser.add_argument(
        "--whisper-tail-paddings",
        default=-1,
        type=int,
        help="""Number of tail padding frames.
        We have removed the 30-second constraint from whisper, so you need to
        choose the amount of tail padding frames by yourself.
        Use -1 to use a default value for tail padding.
        """,
    )

    parser.add_argument(
        "--moonshine-preprocessor",
        default="",
        type=str,
        help="Path to moonshine preprocessor model",
    )

    parser.add_argument(
        "--moonshine-encoder",
        default="",
        type=str,
        help="Path to moonshine encoder model",
    )

    parser.add_argument(
        "--moonshine-uncached-decoder",
        default="",
        type=str,
        help="Path to moonshine uncached decoder model",
    )

    parser.add_argument(
        "--moonshine-cached-decoder",
        default="",
        type=str,
        help="Path to moonshine cached decoder model",
    )

    parser.add_argument(
        "--decoding-method",
        type=str,
        default="greedy_search",
        help="""Valid values are greedy_search and modified_beam_search.
        modified_beam_search is valid only for transducer models.
        """,
    )
    parser.add_argument(
        "--debug",
        type=bool,
        default=False,
        help="True to show debug messages when loading modes.",
    )

    parser.add_argument(
        "--sample-rate",
        type=int,
        default=16000,
        help="""Sample rate of the feature extractor. Must match the one
        expected by the model. Note: The input sound files can have a
        different sample rate from this argument.""",
    )

    parser.add_argument(
        "--feature-dim",
        type=int,
        default=80,
        help="Feature dimension. Must match the one expected by the model",
    )

    parser.add_argument(
        "sound_file",
        type=str,
        help="The input sound file to generate subtitles ",
    )

    return parser.parse_args()


def assert_file_exists(filename: str):
    assert Path(filename).is_file(), (
        f"{filename} does not exist!\n"
        "Please refer to "
        "https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
    )


def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
    if args.encoder:
        assert len(args.paraformer) == 0, args.paraformer
        assert len(args.sense_voice) == 0, args.sense_voice
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder
        assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
        assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
        assert (
            len(args.moonshine_uncached_decoder) == 0
        ), args.moonshine_uncached_decoder
        assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder

        assert_file_exists(args.encoder)
        assert_file_exists(args.decoder)
        assert_file_exists(args.joiner)

        recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
            encoder=args.encoder,
            decoder=args.decoder,
            joiner=args.joiner,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.paraformer:
        assert len(args.sense_voice) == 0, args.sense_voice
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder
        assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
        assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
        assert (
            len(args.moonshine_uncached_decoder) == 0
        ), args.moonshine_uncached_decoder
        assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder

        assert_file_exists(args.paraformer)

        recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
            paraformer=args.paraformer,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.sense_voice:
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder
        assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
        assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
        assert (
            len(args.moonshine_uncached_decoder) == 0
        ), args.moonshine_uncached_decoder
        assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder

        assert_file_exists(args.sense_voice)
        recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
            model=args.sense_voice,
            tokens=args.tokens,
            num_threads=args.num_threads,
            use_itn=True,
            debug=args.debug,
        )
    elif args.wenet_ctc:
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder
        assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
        assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
        assert (
            len(args.moonshine_uncached_decoder) == 0
        ), args.moonshine_uncached_decoder
        assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder

        assert_file_exists(args.wenet_ctc)

        recognizer = sherpa_onnx.OfflineRecognizer.from_wenet_ctc(
            model=args.wenet_ctc,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.whisper_encoder:
        assert_file_exists(args.whisper_encoder)
        assert_file_exists(args.whisper_decoder)
        assert len(args.moonshine_preprocessor) == 0, args.moonshine_preprocessor
        assert len(args.moonshine_encoder) == 0, args.moonshine_encoder
        assert (
            len(args.moonshine_uncached_decoder) == 0
        ), args.moonshine_uncached_decoder
        assert len(args.moonshine_cached_decoder) == 0, args.moonshine_cached_decoder

        recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
            encoder=args.whisper_encoder,
            decoder=args.whisper_decoder,
            tokens=args.tokens,
            num_threads=args.num_threads,
            decoding_method=args.decoding_method,
            debug=args.debug,
            language=args.whisper_language,
            task=args.whisper_task,
            tail_paddings=args.whisper_tail_paddings,
        )
    elif args.moonshine_preprocessor:
        assert_file_exists(args.moonshine_preprocessor)
        assert_file_exists(args.moonshine_encoder)
        assert_file_exists(args.moonshine_uncached_decoder)
        assert_file_exists(args.moonshine_cached_decoder)

        recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine(
            preprocessor=args.moonshine_preprocessor,
            encoder=args.moonshine_encoder,
            uncached_decoder=args.moonshine_uncached_decoder,
            cached_decoder=args.moonshine_cached_decoder,
            tokens=args.tokens,
            num_threads=args.num_threads,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    else:
        raise ValueError("Please specify at least one model")

    return recognizer


@dataclass
class Segment:
    start: float
    duration: float
    text: str = ""

    @property
    def end(self):
        return self.start + self.duration

    def __str__(self):
        s = f"{timedelta(seconds=self.start)}"[:-3]
        s += " --> "
        s += f"{timedelta(seconds=self.end)}"[:-3]
        s = s.replace(".", ",")
        s += "\n"
        s += self.text
        return s


def main():
    args = get_args()
    assert_file_exists(args.tokens)
    assert_file_exists(args.silero_vad_model)

    assert args.num_threads > 0, args.num_threads

    if not Path(args.sound_file).is_file():
        raise ValueError(f"{args.sound_file} does not exist")

    assert (
        args.sample_rate == 16000
    ), f"Only sample rate 16000 is supported.Given: {args.sample_rate}"

    recognizer = create_recognizer(args)

    ffmpeg_cmd = [
        "ffmpeg",
        "-i",
        args.sound_file,
        "-f",
        "s16le",
        "-acodec",
        "pcm_s16le",
        "-ac",
        "1",
        "-ar",
        str(args.sample_rate),
        "-",
    ]

    process = subprocess.Popen(
        ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
    )

    frames_per_read = int(args.sample_rate * 100)  # 100 second

    stream = recognizer.create_stream()

    config = sherpa_onnx.VadModelConfig()
    config.silero_vad.model = args.silero_vad_model
    config.silero_vad.threshold = 0.5
    config.silero_vad.min_silence_duration = 0.25  # seconds
    config.silero_vad.min_speech_duration = 0.25  # seconds

    # If the current segment is larger than this value, then it increases
    # the threshold to 0.9 internally. After detecting this segment,
    # it resets the threshold to its original value.
    config.silero_vad.max_speech_duration = 5  # seconds
    config.sample_rate = args.sample_rate

    window_size = config.silero_vad.window_size

    buffer = []
    vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)

    segment_list = []

    print("Started!")
    start_t = dt.datetime.now()
    num_processed_samples = 0

    is_eof = False
    # TODO(fangjun): Support multithreads
    while not is_eof:
        # *2 because int16_t has two bytes
        data = process.stdout.read(frames_per_read * 2)
        if not data:
            vad.flush()
            is_eof = True
        else:
            samples = np.frombuffer(data, dtype=np.int16)
            samples = samples.astype(np.float32) / 32768

            num_processed_samples += samples.shape[0]

            buffer = np.concatenate([buffer, samples])
            while len(buffer) > window_size:
                vad.accept_waveform(buffer[:window_size])
                buffer = buffer[window_size:]

        streams = []
        segments = []
        while not vad.empty():
            segment = Segment(
                start=vad.front.start / args.sample_rate,
                duration=len(vad.front.samples) / args.sample_rate,
            )
            segments.append(segment)

            stream = recognizer.create_stream()
            stream.accept_waveform(args.sample_rate, vad.front.samples)

            streams.append(stream)

            vad.pop()

        for s in streams:
            recognizer.decode_stream(s)

        for seg, stream in zip(segments, streams):
            seg.text = stream.result.text
            segment_list.append(seg)

    end_t = dt.datetime.now()
    elapsed_seconds = (end_t - start_t).total_seconds()
    duration = num_processed_samples / 16000
    rtf = elapsed_seconds / duration

    srt_filename = Path(args.sound_file).with_suffix(".srt")
    with open(srt_filename, "w", encoding="utf-8") as f:
        for i, seg in enumerate(segment_list):
            print(i + 1, file=f)
            print(seg, file=f)
            print("", file=f)

    print(f"Saved to {srt_filename}")
    print(f"Audio duration:\t{duration:.3f} s")
    print(f"Elapsed:\t{elapsed_seconds:.3f} s")
    print(f"RTF = {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}")
    print("Done!")


if __name__ == "__main__":
    if shutil.which("ffmpeg") is None:
        sys.exit("Please install ffmpeg first!")
    main()