Spaces:
Running
Running
File size: 77,399 Bytes
5690e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 |
# Copyright © [2024] 程序那些事
#
# All rights reserved. This software and associated documentation files (the "Software") are provided for personal and educational use only. Commercial use of the Software is strictly prohibited unless explicit permission is obtained from the author.
#
# Permission is hereby granted to any person to use, copy, and modify the Software for non-commercial purposes, provided that the following conditions are met:
#
# 1. The original copyright notice and this permission notice must be included in all copies or substantial portions of the Software.
# 2. Modifications, if any, must retain the original copyright information and must not imply that the modified version is an official version of the Software.
# 3. Any distribution of the Software or its modifications must retain the original copyright notice and include this permission notice.
#
# For commercial use, including but not limited to selling, distributing, or using the Software as part of any commercial product or service, you must obtain explicit authorization from the author.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# Author: 程序那些事
# email: flydean@163.com
# Website: [www.flydean.com](http://www.flydean.com)
# GitHub: [https://github.com/ddean2009/MoneyPrinterPlus](https://github.com/ddean2009/MoneyPrinterPlus)
#
# All rights reserved.
#
#
import json
import PIL
import requests
import io
import base64
from PIL import Image, PngImagePlugin
from dataclasses import dataclass
from enum import Enum
from typing import List, Dict, Any, Optional, Union, Literal
class Upscaler(str, Enum):
none = "None"
Lanczos = "Lanczos"
Nearest = "Nearest"
LDSR = "LDSR"
BSRGAN = "BSRGAN"
ESRGAN_4x = "R-ESRGAN 4x+"
R_ESRGAN_General_4xV3 = "R-ESRGAN General 4xV3"
ScuNET_GAN = "ScuNET GAN"
ScuNET_PSNR = "ScuNET PSNR"
SwinIR_4x = "SwinIR 4x"
class HiResUpscaler(str, Enum):
none = "None"
Latent = "Latent"
LatentAntialiased = "Latent (antialiased)"
LatentBicubic = "Latent (bicubic)"
LatentBicubicAntialiased = "Latent (bicubic antialiased)"
LatentNearest = "Latent (nearest)"
LatentNearestExact = "Latent (nearest-exact)"
Lanczos = "Lanczos"
Nearest = "Nearest"
ESRGAN_4x = "R-ESRGAN 4x+"
LDSR = "LDSR"
ScuNET_GAN = "ScuNET GAN"
ScuNET_PSNR = "ScuNET PSNR"
SwinIR_4x = "SwinIR 4x"
@dataclass
class WebUIApiResult:
images: list
parameters: dict
info: dict
json: dict
@property
def image(self):
return self.images[0]
class ControlNetUnit:
def __init__(
self,
image: Image = None,
mask: Image = None,
module: str = "none",
model: str = "None",
weight: float = 1.0,
resize_mode: str = "Resize and Fill",
low_vram: bool = False,
processor_res: int = 512,
threshold_a: float = 64,
threshold_b: float = 64,
guidance_start: float = 0.0,
guidance_end: float = 1.0,
control_mode: int = 0,
pixel_perfect: bool = False,
guessmode: int = None, # deprecated: use control_mode
hr_option: str = "Both", # Both, Low res only, High res only
enabled: bool = True,
):
self.image = image
self.mask = mask
self.module = module
self.model = model
self.weight = weight
self.resize_mode = resize_mode
self.low_vram = low_vram
self.processor_res = processor_res
self.threshold_a = threshold_a
self.threshold_b = threshold_b
self.guidance_start = guidance_start
self.guidance_end = guidance_end
self.enabled = enabled
if guessmode:
print(
"ControlNetUnit guessmode is deprecated. Please use control_mode instead."
)
control_mode = guessmode
if control_mode == 0:
self.control_mode = 'Balanced'
elif control_mode == 1:
self.control_mode = 'My prompt is more important'
elif control_mode == 2:
self.control_mode = 'ControlNet is more important'
else:
self.control_mode = control_mode
self.pixel_perfect = pixel_perfect
self.hr_option = hr_option
def to_dict(self):
return {
"image": raw_b64_img(self.image) if self.image else "",
"mask": raw_b64_img(self.mask) if self.mask is not None else None,
"module": self.module,
"model": self.model,
"weight": self.weight,
"resize_mode": self.resize_mode,
"low_vram": self.low_vram,
"processor_res": self.processor_res,
"threshold_a": self.threshold_a,
"threshold_b": self.threshold_b,
"guidance_start": self.guidance_start,
"guidance_end": self.guidance_end,
"control_mode": self.control_mode,
"pixel_perfect": self.pixel_perfect,
"hr_option": self.hr_option,
"enabled": self.enabled,
}
class ADetailer:
def __init__(self,
ad_model: str = "None",
ad_prompt: str = "",
ad_negative_prompt: str = "",
ad_confidence: float = 0.3,
ad_mask_k_largest: float = 0.0,
ad_mask_min_ratio: float = 0.0,
ad_mask_max_ratio: float = 1.0,
ad_dilate_erode: int = 4,
ad_x_offset: int = 0,
ad_y_offset: int = 0,
ad_mask_merge_invert: Literal["None", "Merge", "Merge and Invert"] = "None",
ad_mask_blur: int = 4,
ad_denoising_strength: int = 0.4,
ad_inpaint_only_masked: bool = True,
ad_inpaint_only_masked_padding: int = 32,
ad_use_inpaint_width_height: bool = False,
ad_inpaint_width: int = 512,
ad_inpaint_height: int = 512,
ad_use_steps: bool = False,
ad_steps: int = 28,
ad_use_cfg_scale: bool = False,
ad_cfg_scale: float = 7.0,
# ad_use_sampler: bool = False,
# ad_sampler: str = "None",
ad_use_noise_multiplier: bool = False,
ad_noise_multiplier=1.0,
ad_use_clip_skip: bool = False,
ad_clip_skip: int = 1,
ad_restore_face: bool = False,
ad_controlnet_model: str = "None",
ad_controlnet_module: str = "None",
ad_controlnet_weight: float = 1.0,
ad_controlnet_guidance_start: float = 0.0,
ad_controlnet_guidance_end: float = 1.0,
):
self.ad_model = ad_model
self.ad_prompt = ad_prompt
self.ad_negative_prompt = ad_negative_prompt
self.ad_confidence = ad_confidence
self.ad_mask_k_largest = ad_mask_k_largest
self.ad_mask_min_ratio = ad_mask_min_ratio
self.ad_mask_max_ratio = ad_mask_max_ratio
self.ad_dilate_erode = ad_dilate_erode
self.ad_x_offset = ad_x_offset
self.ad_y_offset = ad_y_offset
self.ad_mask_merge_invert = ad_mask_merge_invert
self.ad_mask_blur = ad_mask_blur
self.ad_denoising_strength = ad_denoising_strength
self.ad_inpaint_only_masked = ad_inpaint_only_masked
self.ad_inpaint_only_masked_padding = ad_inpaint_only_masked_padding
self.ad_use_inpaint_width_height = ad_use_inpaint_width_height
self.ad_inpaint_width = ad_inpaint_width
self.ad_inpaint_height = ad_inpaint_height
self.ad_use_steps = ad_use_steps
self.ad_steps = ad_steps
self.ad_use_cfg_scale = ad_use_cfg_scale
self.ad_cfg_scale = ad_cfg_scale
self.ad_use_noise_multiplier = ad_use_noise_multiplier
self.ad_noise_multiplier = ad_noise_multiplier
self.ad_use_clip_skip = ad_use_clip_skip
self.ad_clip_skip = ad_clip_skip
self.ad_restore_face = ad_restore_face
self.ad_controlnet_model = ad_controlnet_model
self.ad_controlnet_module = ad_controlnet_module
self.ad_controlnet_weight = ad_controlnet_weight
self.ad_controlnet_guidance_start = ad_controlnet_guidance_start
self.ad_controlnet_guidance_end = ad_controlnet_guidance_end
def to_dict(self):
return {
"ad_model": self.ad_model,
"ad_prompt": self.ad_prompt,
"ad_negative_prompt": self.ad_negative_prompt,
"ad_confidence": self.ad_confidence,
"ad_mask_k_largest": self.ad_mask_k_largest,
"ad_mask_min_ratio": self.ad_mask_min_ratio,
"ad_mask_max_ratio": self.ad_mask_max_ratio,
"ad_dilate_erode": self.ad_dilate_erode,
"ad_x_offset": self.ad_x_offset,
"ad_y_offset": self.ad_y_offset,
"ad_mask_merge_invert": self.ad_mask_merge_invert,
"ad_mask_blur": self.ad_mask_blur,
"ad_denoising_strength": self.ad_denoising_strength,
"ad_inpaint_only_masked": self.ad_inpaint_only_masked,
"ad_inpaint_only_masked_padding": self.ad_inpaint_only_masked_padding,
"ad_use_inpaint_width_height": self.ad_use_inpaint_width_height,
"ad_inpaint_width": self.ad_inpaint_width,
"ad_inpaint_height": self.ad_inpaint_height,
"ad_use_steps": self.ad_use_steps,
"ad_steps": self.ad_steps,
"ad_use_cfg_scale": self.ad_use_cfg_scale,
"ad_cfg_scale": self.ad_cfg_scale,
"ad_use_noise_multiplier": self.ad_use_noise_multiplier,
"ad_noise_multiplier": self.ad_noise_multiplier,
"ad_use_clip_skip": self.ad_use_clip_skip,
"ad_clip_skip": self.ad_clip_skip,
"ad_restore_face": self.ad_restore_face,
"ad_controlnet_model": self.ad_controlnet_model,
"ad_controlnet_module": self.ad_controlnet_module,
"ad_controlnet_weight": self.ad_controlnet_weight,
"ad_controlnet_guidance_start": self.ad_controlnet_guidance_start,
"ad_controlnet_guidance_end": self.ad_controlnet_guidance_end,
}
class AnimateDiff:
def __init__(self,
model="mm_sd15_v3.safetensors",
enable=True,
video_length=0,
fps=8,
loop_number=0, # Display loop number
closed_loop='R-P', # Closed loop, 'N' | 'R-P' | 'R+P' | 'A'
batch_size=16,
stride=1,
overlap=-1,
format=['GIF'], # 'GIF' | 'MP4' | 'PNG' | 'WEBP' | 'WEBM' | 'TXT' | 'Frame'
interp='Off', # Frame interpolation, 'Off' | 'FILM'
interp_x=10, # Interp X
video_source=None,
video_path='',
mask_path='',
freeinit_enable=False,
freeinit_filter="butterworth",
freeinit_ds=0.25,
freeinit_dt=0.25,
freeinit_iters=3,
latent_power=1,
latent_scale=32,
last_frame=None,
latent_power_last=1,
latent_scale_last=32,
request_id='',
):
self.model = model
self.enable = enable
self.video_length = video_length
self.fps = fps
self.loop_number = loop_number
self.closed_loop = closed_loop
self.batch_size = batch_size
self.stride = stride
self.overlap = overlap
self.format = format
self.interp = interp
self.interp_x = interp_x
self.video_source = video_source
self.video_path = video_path
self.mask_path = mask_path
self.freeinit_enable = freeinit_enable
self.freeinit_filter = freeinit_filter
self.freeinit_ds = freeinit_ds
self.freeinit_dt = freeinit_dt
self.freeinit_iters = freeinit_iters
self.latent_power = latent_power
self.latent_scale = latent_scale
self.last_frame = last_frame
self.latent_power_last = latent_power_last
self.latent_scale_last = latent_scale_last
self.request_id = request_id
def to_dict(self, is_img2img=False):
infotext = {
"model": self.model,
"enable": self.enable,
"video_length": self.video_length,
"format": self.format,
"fps": self.fps,
"loop_number": self.loop_number,
"closed_loop": self.closed_loop,
"batch_size": self.batch_size,
"stride": self.stride,
"overlap": self.overlap,
"interp": self.interp,
"interp_x": self.interp_x,
"freeinit_enable": self.freeinit_enable,
"freeinit_filter": self.freeinit_filter,
"freeinit_ds": self.freeinit_ds,
"freeinit_dt": self.freeinit_dt,
"freeinit_iters": self.freeinit_iters,
}
if self.request_id:
infotext['request_id'] = self.request_id
if self.last_frame:
infotext['last_frame'] = self.last_frame
if len(self.video_path) > 0:
infotext['video_path'] = self.video_path
if len(self.mask_path) > 0:
infotext['mask_path'] = self.mask_path
if is_img2img:
infotext.update({
"latent_power": self.latent_power,
"latent_scale": self.latent_scale,
"latent_power_last": self.latent_power_last,
"latent_scale_last": self.latent_scale_last,
})
return infotext
class Roop:
def __init__(self, img: PIL.Image,
enable: bool = True,
faces_index: str = "0",
model: str = None,
face_restorer_name: str = "GFPGAN",
face_restorer_visibility: float = 1,
upscaler_name: str = "R-ESRGAN 4x+",
upscaler_scale: float = 1,
upscaler_visibility: float = 1,
swap_in_source: bool = False,
swap_in_generated: bool = True):
self.img = b64_img(img)
self.enable = enable
self.faces_index = faces_index
self.model = model
self.face_restorer_name = face_restorer_name
self.face_restorer_visibility = face_restorer_visibility
self.upscaler_name = upscaler_name
self.upscaler_scale = upscaler_scale
self.upscaler_visibility = upscaler_visibility
self.swap_in_source = swap_in_source
self.swap_in_generated = swap_in_generated
def to_dict(self):
return [
self.img,
self.enable,
self.faces_index,
self.model,
self.face_restorer_name,
self.face_restorer_visibility,
self.upscaler_name,
self.upscaler_scale,
self.upscaler_visibility,
self.swap_in_source,
self.swap_in_generated]
class ReActor:
def __init__(self,
img: PIL.Image, # 0
enable: bool = True, # 1 Enable ReActor
source_faces_index: str = "0", # 2 Comma separated face number(s) from swap-source image
faces_index: str = "0", # 3 Comma separated face number(s) for target image (result)
model: str = 'inswapper_128.onnx', # None, #4 model path
face_restorer_name: str = "CodeFormer", # 4 Restore Face: None; CodeFormer; GFPGAN
face_restorer_visibility: float = 1, # 5 Restore visibility value
restore_first: bool = True, # 7 Restore face -> Upscale
upscaler_name: str = "R-ESRGAN 4x+",
# None, # "R-ESRGAN 4x+", #8 Upscaler (type 'None' if doesn't need), see full list here: http://127.0.0.1:7860/sdapi/v1/script-info -> reactor -> sec.8
upscaler_scale: int = 2, # 9 Upscaler scale value
upscaler_visibility: float = 1,
swap_in_source: bool = False,
swap_in_generated: bool = True,
console_logging_level: int = 1, # 13 Console Log Level (0 - min, 1 - med or 2 - max)
gender_source: int = 0, # 14 Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)
gender_target: int = 0, # 14 Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)
save_original: bool = False,
codeFormer_weight: float = 0.5,
source_hash_check: bool = True,
target_hash_check: bool = False,
device: str = "CUDA", # or CPU
mask_face: bool = True,
select_source: int = 0, # IMPORTANT. MUST BE 0 or faceswap won't work
face_model: str = None,
):
self.img = b64_img(img)
self.enable = enable
self.source_faces_index = source_faces_index
self.faces_index = faces_index
self.model = model
self.face_restorer_name = face_restorer_name
self.face_restorer_visibility = face_restorer_visibility
self.restore_first = restore_first
self.upscaler_name = upscaler_name
self.upscaler_scale = upscaler_scale
self.upscaler_visibility = upscaler_visibility
self.swap_in_source = swap_in_source
self.swap_in_generated = swap_in_generated
self.console_logging_level = console_logging_level
self.gender_source = gender_source
self.gender_target = gender_target
self.save_original = save_original
self.codeFormer_weight = codeFormer_weight
self.source_hash_check = source_hash_check
self.target_hash_check = target_hash_check
self.device = device
self.mask_face = mask_face
self.select_source = select_source
self.face_model = face_model
def to_dict(self):
return [
self.img,
self.enable,
self.source_faces_index,
self.faces_index,
self.model,
self.face_restorer_name,
self.face_restorer_visibility,
self.restore_first,
self.upscaler_name,
self.upscaler_scale,
self.upscaler_visibility,
self.swap_in_source,
self.swap_in_generated,
self.console_logging_level,
self.gender_source,
self.gender_target,
self.save_original,
self.codeFormer_weight,
self.source_hash_check,
self.target_hash_check,
self.device,
self.mask_face,
self.select_source,
self.face_model,
]
class Sag:
def __init__(self,
enable: bool = True, # 1 Enable Sag
scale: float = 0.75,
mask_threshold: float = 1.00
):
self.enable = enable
self.scale = scale
self.mask_threshold = mask_threshold
def to_dict(self):
return [
self.enable,
self.scale,
self.mask_threshold,
]
def b64_img(image: Image) -> str:
return "data:image/png;base64," + raw_b64_img(image)
def raw_b64_img(image: Image) -> str:
# XXX controlnet only accepts RAW base64 without headers
with io.BytesIO() as output_bytes:
metadata = None
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
if metadata is None:
metadata = PngImagePlugin.PngInfo()
metadata.add_text(key, value)
image.save(output_bytes, format="PNG", pnginfo=metadata)
bytes_data = output_bytes.getvalue()
return str(base64.b64encode(bytes_data), "utf-8")
class WebUIApi:
has_controlnet = False
has_adetailer = False
has_animatediff = False
def __init__(
self,
host="127.0.0.1",
port=7860,
baseurl=None,
sampler="Euler a",
scheduler="automatic",
steps=20,
use_https=False,
username=None,
password=None,
):
if baseurl is None:
if use_https:
baseurl = f"https://{host}:{port}/sdapi/v1"
else:
baseurl = f"http://{host}:{port}/sdapi/v1"
self.baseurl = baseurl
self.default_sampler = sampler
self.default_scheduler = scheduler
self.default_steps = steps
self.session = requests.Session()
if username and password:
self.set_auth(username, password)
else:
self.check_extensions()
def check_extensions(self):
try:
scripts = self.get_scripts()
self.has_controlnet = "controlnet m2m" in scripts["txt2img"]
self.has_adetailer = "adetailer" in scripts["txt2img"]
self.has_animatediff = "animatediff" in scripts["txt2img"]
except:
pass
def set_auth(self, username, password):
self.session.auth = (username, password)
self.check_extensions()
def _to_api_result(self, response):
if response.status_code != 200:
raise RuntimeError(response.status_code, response.text)
r = response.json()
images = []
if "images" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(i))) for i in r["images"]]
elif "image" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(r["image"])))]
info = ""
if "info" in r.keys():
try:
info = json.loads(r["info"])
except:
info = r["info"]
elif "html_info" in r.keys():
info = r["html_info"]
elif "caption" in r.keys():
info = r["caption"]
parameters = ""
if "parameters" in r.keys():
parameters = r["parameters"]
return WebUIApiResult(images, parameters, info, r)
async def _to_api_result_async(self, response):
if response.status != 200:
raise RuntimeError(response.status, await response.text())
r = await response.json()
images = []
if "images" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(i))) for i in r["images"]]
elif "image" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(r["image"])))]
info = ""
if "info" in r.keys():
try:
info = json.loads(r["info"])
except:
info = r["info"]
elif "html_info" in r.keys():
info = r["html_info"]
elif "caption" in r.keys():
info = r["caption"]
parameters = ""
if "parameters" in r.keys():
parameters = r["parameters"]
return WebUIApiResult(images, parameters, info, r)
def txt2img(
self,
enable_hr=False,
denoising_strength=0.7,
firstphase_width=0,
firstphase_height=0,
hr_scale=2,
hr_upscaler=HiResUpscaler.Latent,
hr_second_pass_steps=0,
hr_resize_x=0,
hr_resize_y=0,
prompt="",
styles=[],
seed=-1,
subseed=-1,
subseed_strength=0.0,
seed_resize_from_h=0,
seed_resize_from_w=0,
sampler_name=None, # use this instead of sampler_index
scheduler=None,
batch_size=1,
n_iter=1,
steps=None,
cfg_scale=7.0,
width=512,
height=512,
restore_faces=False,
tiling=False,
do_not_save_samples=False,
do_not_save_grid=False,
negative_prompt="",
eta=1.0,
s_churn=0,
s_tmax=0,
s_tmin=0,
s_noise=1,
override_settings={},
override_settings_restore_afterwards=True,
script_args=None, # List of arguments for the script "script_name"
script_name=None,
send_images=True,
save_images=False,
alwayson_scripts={},
controlnet_units: List[ControlNetUnit] = [],
adetailer: List[ADetailer] = [],
animatediff: AnimateDiff = None,
roop: Roop = None,
reactor: ReActor = None,
sag: Sag = None,
sampler_index=None, # deprecated: use sampler_name
use_deprecated_controlnet=False,
use_async=False,
):
if sampler_index is None:
sampler_index = self.default_sampler
if sampler_name is None:
sampler_name = self.default_sampler
if scheduler is None:
scheduler = self.default_scheduler
if steps is None:
steps = self.default_steps
if script_args is None:
script_args = []
payload = {
"enable_hr": enable_hr,
"hr_scale": hr_scale,
"hr_upscaler": hr_upscaler,
"hr_second_pass_steps": hr_second_pass_steps,
"hr_resize_x": hr_resize_x,
"hr_resize_y": hr_resize_y,
"denoising_strength": denoising_strength,
"firstphase_width": firstphase_width,
"firstphase_height": firstphase_height,
"prompt": prompt,
"styles": styles,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"seed_resize_from_h": seed_resize_from_h,
"seed_resize_from_w": seed_resize_from_w,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"tiling": tiling,
"do_not_save_samples": do_not_save_samples,
"do_not_save_grid": do_not_save_grid,
"negative_prompt": negative_prompt,
"eta": eta,
"s_churn": s_churn,
"s_tmax": s_tmax,
"s_tmin": s_tmin,
"s_noise": s_noise,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
"sampler_name": sampler_name,
"scheduler": scheduler,
"sampler_index": sampler_index,
"script_name": script_name,
"script_args": script_args,
"send_images": send_images,
"save_images": save_images,
"alwayson_scripts": alwayson_scripts,
}
if use_deprecated_controlnet and controlnet_units and len(controlnet_units) > 0:
payload["controlnet_units"] = [x.to_dict() for x in controlnet_units]
return self.custom_post(
"controlnet/txt2img", payload=payload, use_async=use_async
)
if adetailer and len(adetailer) > 0:
ads = [True]
for x in adetailer:
ads.append(x.to_dict())
payload["alwayson_scripts"]["ADetailer"] = {
"args": ads
}
elif self.has_adetailer:
payload["alwayson_scripts"]["ADetailer"] = {
"args": [False]
}
if animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [animatediff.to_dict(False)]
}
elif self.has_animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [False],
}
if roop:
payload["alwayson_scripts"]["roop"] = {
"args": roop.to_dict()
}
if reactor:
payload["alwayson_scripts"]["reactor"] = {
"args": reactor.to_dict()
}
if sag:
payload["alwayson_scripts"]["Self Attention Guidance"] = {
"args": sag.to_dict()
}
if controlnet_units and len(controlnet_units) > 0:
payload["alwayson_scripts"]["ControlNet"] = {
"args": [x.to_dict() for x in controlnet_units]
}
elif self.has_controlnet:
# workaround : if not passed, webui will use previous args!
payload["alwayson_scripts"]["ControlNet"] = {"args": []}
return self.post_and_get_api_result(
f"{self.baseurl}/txt2img", payload, use_async
)
def post_and_get_api_result(self, url, json, use_async):
if use_async:
import asyncio
return asyncio.ensure_future(self.async_post(url=url, json=json))
else:
response = self.session.post(url=url, json=json)
return self._to_api_result(response)
async def async_post(self, url, json):
import aiohttp
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout()) as session:
infinite_timeout = aiohttp.ClientTimeout(total=None)
auth = aiohttp.BasicAuth(self.session.auth[0], self.session.auth[1]) if self.session.auth else None
async with session.post(url, json=json, auth=auth,
timeout=infinite_timeout) as response: # infinite_timeout timeout here for timeout fix
return await self._to_api_result_async(response)
def img2img(
self,
images=[], # list of PIL Image
resize_mode=0,
denoising_strength=0.75,
image_cfg_scale=1.5,
mask_image=None, # PIL Image mask
mask_blur=4,
inpainting_fill=0,
inpaint_full_res=True,
inpaint_full_res_padding=0,
inpainting_mask_invert=0,
initial_noise_multiplier=1,
prompt="",
styles=[],
seed=-1,
subseed=-1,
subseed_strength=0,
seed_resize_from_h=0,
seed_resize_from_w=0,
sampler_name=None, # use this instead of sampler_index
scheduler=None,
batch_size=1,
n_iter=1,
steps=None,
cfg_scale=7.0,
width=512,
height=512,
restore_faces=False,
tiling=False,
do_not_save_samples=False,
do_not_save_grid=False,
negative_prompt="",
eta=1.0,
s_churn=0,
s_tmax=0,
s_tmin=0,
s_noise=1,
override_settings={},
override_settings_restore_afterwards=True,
script_args=None, # List of arguments for the script "script_name"
sampler_index=None, # deprecated: use sampler_name
include_init_images=False,
script_name=None,
send_images=True,
save_images=False,
alwayson_scripts={},
controlnet_units: List[ControlNetUnit] = [],
adetailer: List[ADetailer] = [],
animatediff: AnimateDiff = None,
roop: Roop = None,
reactor: ReActor = None,
sag: Sag = None,
use_deprecated_controlnet=False,
use_async=False,
):
if sampler_name is None:
sampler_name = self.default_sampler
if sampler_index is None:
sampler_index = self.default_sampler
if scheduler is None:
scheduler = self.default_scheduler
if steps is None:
steps = self.default_steps
if script_args is None:
script_args = []
payload = {
"init_images": [b64_img(x) for x in images],
"resize_mode": resize_mode,
"denoising_strength": denoising_strength,
"mask_blur": mask_blur,
"inpainting_fill": inpainting_fill,
"inpaint_full_res": inpaint_full_res,
"inpaint_full_res_padding": inpaint_full_res_padding,
"inpainting_mask_invert": inpainting_mask_invert,
"initial_noise_multiplier": initial_noise_multiplier,
"prompt": prompt,
"styles": styles,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"seed_resize_from_h": seed_resize_from_h,
"seed_resize_from_w": seed_resize_from_w,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"image_cfg_scale": image_cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"tiling": tiling,
"do_not_save_samples": do_not_save_samples,
"do_not_save_grid": do_not_save_grid,
"negative_prompt": negative_prompt,
"eta": eta,
"s_churn": s_churn,
"s_tmax": s_tmax,
"s_tmin": s_tmin,
"s_noise": s_noise,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
"sampler_name": sampler_name,
"scheduler": scheduler,
"sampler_index": sampler_index,
"include_init_images": include_init_images,
"script_name": script_name,
"script_args": script_args,
"send_images": send_images,
"save_images": save_images,
"alwayson_scripts": alwayson_scripts,
}
if mask_image is not None:
payload["mask"] = b64_img(mask_image)
if use_deprecated_controlnet and controlnet_units and len(controlnet_units) > 0:
payload["controlnet_units"] = [x.to_dict() for x in controlnet_units]
return self.custom_post(
"controlnet/img2img", payload=payload, use_async=use_async
)
if adetailer and len(adetailer) > 0:
ads = [True]
for x in adetailer:
ads.append(x.to_dict())
payload["alwayson_scripts"]["ADetailer"] = {
"args": ads
}
elif self.has_adetailer:
payload["alwayson_scripts"]["ADetailer"] = {
"args": [False]
}
if animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [animatediff.to_dict(True)]
}
elif self.has_animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [False],
}
if roop:
payload["alwayson_scripts"]["roop"] = {
"args": roop.to_dict()
}
if reactor:
payload["alwayson_scripts"]["reactor"] = {
"args": reactor.to_dict()
}
if sag:
payload["alwayson_scripts"]["Self Attention Guidance"] = {
"args": sag.to_dict()
}
if controlnet_units and len(controlnet_units) > 0:
payload["alwayson_scripts"]["ControlNet"] = {
"args": [x.to_dict() for x in controlnet_units]
}
elif self.has_controlnet:
payload["alwayson_scripts"]["ControlNet"] = {"args": []}
return self.post_and_get_api_result(
f"{self.baseurl}/img2img", payload, use_async
)
def extra_single_image(
self,
image, # PIL Image
resize_mode=0,
show_extras_results=True,
gfpgan_visibility=0,
codeformer_visibility=0,
codeformer_weight=0,
upscaling_resize=2,
upscaling_resize_w=512,
upscaling_resize_h=512,
upscaling_crop=True,
upscaler_1="None",
upscaler_2="None",
extras_upscaler_2_visibility=0,
upscale_first=False,
use_async=False,
):
payload = {
"resize_mode": resize_mode,
"show_extras_results": show_extras_results,
"gfpgan_visibility": gfpgan_visibility,
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
"upscaling_resize": upscaling_resize,
"upscaling_resize_w": upscaling_resize_w,
"upscaling_resize_h": upscaling_resize_h,
"upscaling_crop": upscaling_crop,
"upscaler_1": upscaler_1,
"upscaler_2": upscaler_2,
"extras_upscaler_2_visibility": extras_upscaler_2_visibility,
"upscale_first": upscale_first,
"image": b64_img(image),
}
return self.post_and_get_api_result(
f"{self.baseurl}/extra-single-image", payload, use_async
)
def extra_batch_images(
self,
images, # list of PIL images
name_list=None, # list of image names
resize_mode=0,
show_extras_results=True,
gfpgan_visibility=0,
codeformer_visibility=0,
codeformer_weight=0,
upscaling_resize=2,
upscaling_resize_w=512,
upscaling_resize_h=512,
upscaling_crop=True,
upscaler_1="None",
upscaler_2="None",
extras_upscaler_2_visibility=0,
upscale_first=False,
use_async=False,
):
if name_list is not None:
if len(name_list) != len(images):
raise RuntimeError("len(images) != len(name_list)")
else:
name_list = [f"image{i + 1:05}" for i in range(len(images))]
images = [b64_img(x) for x in images]
image_list = []
for name, image in zip(name_list, images):
image_list.append({"data": image, "name": name})
payload = {
"resize_mode": resize_mode,
"show_extras_results": show_extras_results,
"gfpgan_visibility": gfpgan_visibility,
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
"upscaling_resize": upscaling_resize,
"upscaling_resize_w": upscaling_resize_w,
"upscaling_resize_h": upscaling_resize_h,
"upscaling_crop": upscaling_crop,
"upscaler_1": upscaler_1,
"upscaler_2": upscaler_2,
"extras_upscaler_2_visibility": extras_upscaler_2_visibility,
"upscale_first": upscale_first,
"imageList": image_list,
}
return self.post_and_get_api_result(
f"{self.baseurl}/extra-batch-images", payload, use_async
)
# XXX 500 error (2022/12/26)
def png_info(self, image):
payload = {
"image": b64_img(image),
}
response = self.session.post(url=f"{self.baseurl}/png-info", json=payload)
return self._to_api_result(response)
"""
:param image pass base64 encoded image or PIL Image
:param model "clip" or "deepdanbooru"
"""
def interrogate(self, image, model="clip"):
payload = {
"image": b64_img(image) if isinstance(image, Image.Image) else image,
"model": model,
}
response = self.session.post(url=f"{self.baseurl}/interrogate", json=payload)
return self._to_api_result(response)
def list_prompt_gen_models(self):
r = self.custom_get("promptgen/list_models")
return r['available_models']
def prompt_gen(self,
model_name: str = "AUTOMATIC/promptgen-lexart",
batch_count: int = 1,
batch_size: int = 10,
text: str = "",
min_length: int = 20,
max_length: int = 150,
num_beams: int = 1,
temperature: float = 1,
repetition_penalty: float = 1,
length_preference: float = 1,
sampling_mode: str = "Top K",
top_k: float = 12,
top_p: float = 0.15,
):
payload = {
"model_name": model_name,
"batch_count": batch_count,
"batch_size": batch_size,
"text": text,
"min_length": min_length,
"max_length": max_length,
"num_beams": num_beams,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"length_preference": length_preference,
"sampling_mode": sampling_mode,
"top_k": top_k,
"top_p": top_p
}
r = self.custom_post("promptgen/generate", payload=payload)
return r.json['prompts']
def interrupt(self):
response = self.session.post(url=f"{self.baseurl}/interrupt")
return response.json()
def skip(self):
response = self.session.post(url=f"{self.baseurl}/skip")
return response.json()
def get_options(self):
response = self.session.get(url=f"{self.baseurl}/options")
return response.json()
def set_options(self, options):
response = self.session.post(url=f"{self.baseurl}/options", json=options)
return response.json()
def get_cmd_flags(self):
response = self.session.get(url=f"{self.baseurl}/cmd-flags")
return response.json()
def get_progress(self):
response = self.session.get(url=f"{self.baseurl}/progress")
return response.json()
def get_cmd_flags(self):
response = self.session.get(url=f"{self.baseurl}/cmd-flags")
return response.json()
def get_samplers(self):
response = self.session.get(url=f"{self.baseurl}/samplers")
return response.json()
def get_sd_vae(self):
response = self.session.get(url=f"{self.baseurl}/sd-vae")
return response.json()
def get_upscalers(self):
response = self.session.get(url=f"{self.baseurl}/upscalers")
return response.json()
def get_latent_upscale_modes(self):
response = self.session.get(url=f"{self.baseurl}/latent-upscale-modes")
return response.json()
def get_loras(self):
response = self.session.get(url=f"{self.baseurl}/loras")
return response.json()
def get_sd_models(self):
response = self.session.get(url=f"{self.baseurl}/sd-models")
return response.json()
def get_hypernetworks(self):
response = self.session.get(url=f"{self.baseurl}/hypernetworks")
return response.json()
def get_face_restorers(self):
response = self.session.get(url=f"{self.baseurl}/face-restorers")
return response.json()
def get_realesrgan_models(self):
response = self.session.get(url=f"{self.baseurl}/realesrgan-models")
return response.json()
def get_prompt_styles(self):
response = self.session.get(url=f"{self.baseurl}/prompt-styles")
return response.json()
def get_artist_categories(self): # deprecated ?
response = self.session.get(url=f"{self.baseurl}/artist-categories")
return response.json()
def get_artists(self): # deprecated ?
response = self.session.get(url=f"{self.baseurl}/artists")
return response.json()
def refresh_checkpoints(self):
response = self.session.post(url=f"{self.baseurl}/refresh-checkpoints")
return response.json()
def get_scripts(self):
response = self.session.get(url=f"{self.baseurl}/scripts")
return response.json()
def get_embeddings(self):
response = self.session.get(url=f"{self.baseurl}/embeddings")
return response.json()
def get_memory(self):
response = self.session.get(url=f"{self.baseurl}/memory")
return response.json()
def get_schedulers(self):
response = self.session.get(url=f"{self.baseurl}/schedulers")
return response.json()
def get_endpoint(self, endpoint, baseurl):
if baseurl:
return f"{self.baseurl}/{endpoint}"
else:
from urllib.parse import urlparse, urlunparse
parsed_url = urlparse(self.baseurl)
basehost = parsed_url.netloc
parsed_url2 = (parsed_url[0], basehost, endpoint, "", "", "")
return urlunparse(parsed_url2)
def custom_get(self, endpoint, baseurl=False):
url = self.get_endpoint(endpoint, baseurl)
response = self.session.get(url=url)
return response.json()
def custom_post(self, endpoint, payload={}, baseurl=False, use_async=False):
url = self.get_endpoint(endpoint, baseurl)
if use_async:
import asyncio
return asyncio.ensure_future(self.async_post(url=url, json=payload))
else:
response = self.session.post(url=url, json=payload)
return self._to_api_result(response)
def controlnet_version(self):
r = self.custom_get("controlnet/version")
return r["version"]
def controlnet_model_list(self):
r = self.custom_get("controlnet/model_list")
return r["model_list"]
def controlnet_module_list(self):
r = self.custom_get("controlnet/module_list")
return r["module_list"]
def controlnet_detect(
self, images, module="none", processor_res=512, threshold_a=64, threshold_b=64
):
images = [b64_img(x) for x in images]
payload = {
"controlnet_module": module,
"controlnet_images": images,
"controlnet_processor_res": processor_res,
"controlnet_threshold_a": threshold_a,
"controlnet_threshold_b": threshold_b,
}
r = self.custom_post("controlnet/detect", payload=payload)
return r
def util_get_model_names(self):
return sorted([x["title"] for x in self.get_sd_models()])
def util_get_sampler_names(self):
return sorted([s['name'] for s in self.get_samplers()])
def util_get_scheduler_names(self):
return sorted([s['name'] for s in self.get_schedulers()])
def util_set_model(self, name, find_closest=True):
if find_closest:
name = name.lower()
models = self.util_get_model_names()
found_model = None
if name in models:
found_model = name
elif find_closest:
import difflib
def str_simularity(a, b):
return difflib.SequenceMatcher(None, a, b).ratio()
max_sim = 0.0
max_model = models[0]
for model in models:
sim = str_simularity(name, model)
if sim >= max_sim:
max_sim = sim
max_model = model
found_model = max_model
if found_model:
print(f"loading {found_model}")
options = {}
options["sd_model_checkpoint"] = found_model
self.set_options(options)
print(f"model changed to {found_model}")
else:
print("model not found")
def util_get_current_model(self):
options = self.get_options()
if ("sd_model_checkpoint" in options):
return options["sd_model_checkpoint"]
else:
sd_models = self.get_sd_models()
sd_model = [model for model in sd_models if model["sha256"] == options["sd_checkpoint_hash"]]
return sd_model[0]["title"]
def util_wait_for_ready(self, check_interval=5.0):
import time
while True:
result = self.get_progress()
progress = result["progress"]
job_count = result["state"]["job_count"]
if progress == 0.0 and job_count == 0:
break
else:
print(f"[WAIT]: progress = {progress:.4f}, job_count = {job_count}")
time.sleep(check_interval)
## Interface for extensions
@dataclass
class ModelKeywordResult:
keywords: list
model: str
oldhash: str
match_source: str
class ModelKeywordInterface:
def __init__(self, webuiapi):
self.api = webuiapi
def get_keywords(self):
result = self.api.custom_get("model_keyword/get_keywords")
keywords = result["keywords"]
model = result["model"]
oldhash = result["hash"]
match_source = result["match_source"]
return ModelKeywordResult(keywords, model, oldhash, match_source)
# https://github.com/Klace/stable-diffusion-webui-instruct-pix2pix
class InstructPix2PixInterface:
def __init__(self, webuiapi):
self.api = webuiapi
def img2img(
self,
images=[],
prompt: str = "",
negative_prompt: str = "",
output_batches: int = 1,
sampler: str = "Euler a",
steps: int = 20,
seed: int = 0,
randomize_seed: bool = True,
text_cfg: float = 7.5,
image_cfg: float = 1.5,
randomize_cfg: bool = False,
output_image_width: int = 512,
):
init_images = [b64_img(x) for x in images]
payload = {
"init_images": init_images,
"prompt": prompt,
"negative_prompt": negative_prompt,
"output_batches": output_batches,
"sampler": sampler,
"steps": steps,
"seed": seed,
"randomize_seed": randomize_seed,
"text_cfg": text_cfg,
"image_cfg": image_cfg,
"randomize_cfg": randomize_cfg,
"output_image_width": output_image_width,
}
return self.api.custom_post("instruct-pix2pix/img2img", payload=payload)
# https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg
class RemBGInterface:
def __init__(self, webuiapi):
self.api = webuiapi
def rembg(
self,
input_image: str = "", # image string (?)
model: str = 'u2net',
# [None, 'u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg','silueta','isnet-general-use','isnet-anime']
return_mask: bool = False,
alpha_matting: bool = False,
alpha_matting_foreground_threshold: int = 240,
alpha_matting_background_threshold: int = 10,
alpha_matting_erode_size: int = 10
):
payload = {
"input_image": b64_img(input_image),
"model": model,
"return_mask": return_mask,
"alpha_matting": alpha_matting,
"alpha_matting_foreground_threshold": alpha_matting_foreground_threshold,
"alpha_matting_background_threshold": alpha_matting_background_threshold,
"alpha_matting_erode_size": alpha_matting_erode_size
}
return self.api.custom_post("rembg", payload=payload)
# https://github.com/Mikubill/sd-webui-controlnet
class ControlNetInterface:
def __init__(self, webuiapi, show_deprecation_warning=True):
self.api = webuiapi
self.show_deprecation_warning = show_deprecation_warning
def print_deprecation_warning(self):
print(
"ControlNetInterface txt2img/img2img is deprecated. Please use normal txt2img/img2img with controlnet_units param"
)
def txt2img(
self,
prompt: str = "",
negative_prompt: str = "",
controlnet_image: [] = [],
controlnet_mask: [] = [],
controlnet_module: str = "",
controlnet_model: str = "",
controlnet_weight: float = 0.5,
controlnet_resize_mode: str = "Scale to Fit (Inner Fit)",
controlnet_low_vram: bool = False,
controlnet_processor_res: int = 512,
controlnet_threshold_a: int = 64,
controlnet_threshold_b: int = 64,
controlnet_guidance: float = 1.0,
enable_hr: bool = False, # hiresfix
denoising_strength: float = 0.5,
hr_scale: float = 1.5,
hr_upscale: str = "Latent",
guess_mode: bool = True,
seed: int = -1,
subseed: int = -1,
subseed_strength: int = -1,
sampler_index: str = "Euler a",
batch_size: int = 1,
n_iter: int = 1, # Iteration
steps: int = 20,
cfg_scale: float = 7,
width: int = 512,
height: int = 512,
restore_faces: bool = False,
override_settings: Dict[str, Any] = None,
override_settings_restore_afterwards: bool = True,
):
if self.show_deprecation_warning:
self.print_deprecation_warning()
controlnet_image_b64 = [raw_b64_img(x) for x in controlnet_image]
controlnet_mask_b64 = [raw_b64_img(x) for x in controlnet_mask]
payload = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"controlnet_image": controlnet_image_b64,
"controlnet_mask": controlnet_mask_b64,
"controlnet_module": controlnet_module,
"controlnet_model": controlnet_model,
"controlnet_weight": controlnet_weight,
"controlnet_resize_mode": controlnet_resize_mode,
"controlnet_low_vram": controlnet_low_vram,
"controlnet_processor_res": controlnet_processor_res,
"controlnet_threshold_a": controlnet_threshold_a,
"controlnet_threshold_b": controlnet_threshold_b,
"enable_hr": enable_hr,
"denoising_strength": denoising_strength,
"hr_scale": hr_scale,
"hr_upscale": hr_upscale,
"guess_mode": guess_mode,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"sampler_index": sampler_index,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
}
return self.api.custom_post("controlnet/txt2img", payload=payload)
def img2img(
self,
init_images: [] = [],
mask: str = None,
mask_blur: int = 30,
inpainting_fill: int = 0,
inpaint_full_res: bool = True,
inpaint_full_res_padding: int = 1,
inpainting_mask_invert: int = 1,
resize_mode: int = 0,
denoising_strength: float = 0.7,
prompt: str = "",
negative_prompt: str = "",
controlnet_image: [] = [],
controlnet_mask: [] = [],
controlnet_module: str = "",
controlnet_model: str = "",
controlnet_weight: float = 1.0,
controlnet_resize_mode: str = "Scale to Fit (Inner Fit)",
controlnet_low_vram: bool = False,
controlnet_processor_res: int = 512,
controlnet_threshold_a: int = 64,
controlnet_threshold_b: int = 64,
guess_mode: bool = True,
seed: int = -1,
subseed: int = -1,
subseed_strength: int = -1,
sampler_index: str = "",
batch_size: int = 1,
n_iter: int = 1, # Iteration
steps: int = 20,
cfg_scale: float = 7,
width: int = 512,
height: int = 512,
restore_faces: bool = False,
include_init_images: bool = True,
override_settings: Dict[str, Any] = None,
override_settings_restore_afterwards: bool = True,
):
if self.show_deprecation_warning:
self.print_deprecation_warning()
init_images_b64 = [raw_b64_img(x) for x in init_images]
controlnet_image_b64 = [raw_b64_img(x) for x in controlnet_image]
controlnet_mask_b64 = [raw_b64_img(x) for x in controlnet_mask]
payload = {
"init_images": init_images_b64,
"mask": raw_b64_img(mask) if mask else None,
"mask_blur": mask_blur,
"inpainting_fill": inpainting_fill,
"inpaint_full_res": inpaint_full_res,
"inpaint_full_res_padding": inpaint_full_res_padding,
"inpainting_mask_invert": inpainting_mask_invert,
"resize_mode": resize_mode,
"denoising_strength": denoising_strength,
"prompt": prompt,
"negative_prompt": negative_prompt,
"controlnet_image": controlnet_image_b64,
"controlnet_mask": controlnet_mask_b64,
"controlnet_module": controlnet_module,
"controlnet_model": controlnet_model,
"controlnet_weight": controlnet_weight,
"controlnet_resize_mode": controlnet_resize_mode,
"controlnet_low_vram": controlnet_low_vram,
"controlnet_processor_res": controlnet_processor_res,
"controlnet_threshold_a": controlnet_threshold_a,
"controlnet_threshold_b": controlnet_threshold_b,
"guess_mode": guess_mode,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"sampler_index": sampler_index,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"include_init_images": include_init_images,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
}
return self.api.custom_post("controlnet/img2img", payload=payload)
def model_list(self):
r = self.api.custom_get("controlnet/model_list")
return r["model_list"]
# https://github.com/continue-revolution/sd-webui-segment-anything
@dataclass
class SegmentAnythingSamResult:
message: Optional[str]
blended_images: List[Image.Image]
masks: List[Image.Image]
masked_images: List[Image.Image]
@dataclass
class SegmentAnythingGinoResult:
message: str
image_with_box: Image.Image
@dataclass
class SegmentAnythingDilationResult:
blended_image: Image.Image
mask: Image.Image
masked_image: Image.Image
@dataclass
class SegmentAnythingControlNetSegNotRandomResult:
message: str
sem_presam: Image.Image
sem_postsam: Image.Image
blended_presam: Image.Image
blended_postsam: Image.Image
@dataclass
class SegmentAnythingControlNetSegRandomResult:
message: str
blended_image: Image.Image
random_seg: Image.Image
edit_anything_control: Image.Image
@dataclass
class SegmentAnythingSemanticSegWithCatIdResult:
message: str
blended_image: Image.Image
mask: Image.Image
masked_image: Image.Image
resized_input: Image.Image
class SegmentAnythingInterface:
def __init__(self, webuiapi: WebUIApi):
self.api = webuiapi
def heartbeat(self) -> Dict[str, str]:
"""Check if this extension is working."""
return self.api.custom_get("sam/heartbeat")
def get_sam_models(self) -> List[str]:
"""Get available SAM models"""
return self.api.custom_get("sam/sam-model")
def sam_predict(
self,
image: Image,
sam_model_name: str = "sam_vit_h_4b8939.pth",
sam_positive_points: Optional[List[List[float]]] = None,
sam_negative_points: Optional[List[List[float]]] = None,
dino_enabled: bool = False,
dino_model_name: Optional[str] = "GroundingDINO_SwinT_OGC (694MB)",
dino_text_prompt: Optional[str] = None,
dino_box_threshold: Optional[float] = 0.3,
dino_preview_checkbox: bool = False,
dino_preview_boxes_selection: Optional[List[int]] = None
) -> SegmentAnythingSamResult:
"""
Get masks from SAM
:param image: Input image.
:param sam_model_name: SAM model name. You should manually download models before using them.
:param sam_positive_points: Positive point prompts in N * 2 python list.
:param sam_negative_points: Negative point prompts in N * 2 python list.
:param dino_enabled: Whether to use GroundingDINO to generate bounding boxes
from text to guide SAM to generate masks.
:param dino_model_name: Choose one of "GroundingDINO_SwinT_OGC (694MB)" and "GroundingDINO_SwinB (938MB)"
as your desired GroundingDINO model.
:param dino_text_prompt: Text prompt for GroundingDINO to generate bounding boxes.
Separate different categories with .
:param dino_box_threshold: Threshold for selecting bounding boxes. Do not use a very high value,
otherwise you may get no box.
:param dino_preview_checkbox: Whether to preview checkbox.
You can enable preview to select boxes you want if you have accessed API dino-predict
:param dino_preview_boxes_selection: Choose the boxes you want. Index start from 0.
"""
payload = {
"input_image": raw_b64_img(image),
"sam_model_name": sam_model_name,
"sam_positive_points": sam_positive_points or [],
"sam_negative_points": sam_negative_points or [],
"dino_enabled": dino_enabled,
"dino_model_name": dino_model_name,
"dino_text_prompt": dino_text_prompt,
"dino_box_threshold": dino_box_threshold,
"dino_preview_checkbox": dino_preview_checkbox,
"dino_preview_boxes_selection": dino_preview_boxes_selection
}
url = self.api.get_endpoint("sam/sam-predict", baseurl=False)
r = self.api.session.post(url=url, json=payload).json()
return SegmentAnythingSamResult(
message=r.get("msg"),
blended_images=[Image.open(io.BytesIO(base64.b64decode(i))) for i in r["blended_images"]],
masks=[Image.open(io.BytesIO(base64.b64decode(i))) for i in r["masks"]],
masked_images=[Image.open(io.BytesIO(base64.b64decode(i))) for i in r["masked_images"]]
)
def dino_predict(
self,
image: Image,
text_prompt: str,
dino_model_name: str = "GroundingDINO_SwinT_OGC (694MB)",
box_threshold: float = 0.3
) -> SegmentAnythingGinoResult:
"""
Get bounding boxes from GroundingDINO
:param image: Input image.
:param text_prompt: Text prompt for GroundingDINO to generate bounding boxes.
Separate different categories with .
:param dino_model_name: Choose one of "GroundingDINO_SwinT_OGC (694MB)" and "GroundingDINO_SwinB (938MB)"
as your desired GroundingDINO model.
:param box_threshold: Threshold for selecting bounding boxes. Do not use a very high value,
otherwise you may get no box.
"""
payload = {
"input_image": raw_b64_img(image),
"text_prompt": text_prompt,
"dino_model_name": dino_model_name,
"box_threshold": box_threshold
}
url = self.api.get_endpoint("sam/dino-predict", baseurl=False)
r = self.api.session.post(url=url, json=payload).json()
return SegmentAnythingGinoResult(
message=r.get("msg"),
image_with_box=Image.open(io.BytesIO(base64.b64decode(r["image_with_box"])))
)
def dilate_mask(
self,
image: Image,
mask: Image,
dilate_amount: int = 10
) -> SegmentAnythingDilationResult:
"""
Expand mask
:param image: Input image.
:param mask: Input mask.
:param dilate_amount: Mask expansion amount from 0 to 100.
"""
payload = {
"input_image": raw_b64_img(image),
"mask": raw_b64_img(mask),
"dilate_amount": dilate_amount
}
url = self.api.get_endpoint("sam/dilate-mask", baseurl=False)
r = self.api.session.post(url=url, json=payload).json()
return SegmentAnythingDilationResult(
blended_image=Image.open(io.BytesIO(base64.b64decode(r["blended_image"]))),
mask=Image.open(io.BytesIO(base64.b64decode(r["mask"]))),
masked_image=Image.open(io.BytesIO(base64.b64decode(r["masked_image"])))
)
def generate_semantic_segmentation(
self,
image: Image,
sam_model_name: str = "sam_vit_h_4b8939.pth",
processor: str = "seg_ofade20k",
processor_res: int = 512,
pixel_perfect: bool = False,
resize_mode: Optional[int] = 1,
target_width: Optional[int] = None,
target_height: Optional[int] = None,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
min_mask_region_area: int = 0
) -> Union[SegmentAnythingControlNetSegNotRandomResult, SegmentAnythingControlNetSegRandomResult]:
"""
Generate semantic segmentation enhanced by SAM.
:param image: Input image.
:param sam_model_name: SAM model name.
:param processor: Preprocessor for semantic segmentation, choose from one of "seg_ufade20k"
(uniformer trained on ade20k, performance really bad, can be greatly enhanced by SAM),
"seg_ofade20k" (oneformer trained on ade20k, performance far better than uniformer, can
be slightly improved by SAM), "seg_ofcoco" (oneformer trained on coco, similar to seg_ofade20k),
"random" (for EditAnything)
:param processor_res: Preprocessor resolution, range in (64, 2048].
:param pixel_perfect: Whether to enable pixel perfect. If enabled, target_W and target_H will be required,
and the processor resolution will be overridden by the optimal value.
:param resize_mode: Resize mode from the original shape to target shape,
only effective when pixel_perfect is enabled. 0: just resize, 1: crop and resize, 2: resize and fill
:param target_width: [Required if pixel_perfect is True] Target width if the segmentation will be used
to generate a new image.
:param target_height: [Required if pixel_perfect is True] Target height if the segmentation will be used
to generate a new image.
:param points_per_side: The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
:param points_per_batch: Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
:param pred_iou_thresh: A filtering threshold in [0,1], using the
model's predicted mask quality.
:param stability_score_thresh: A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
:param stability_score_offset: The amount to shift the cutoff when
calculated the stability score.
:param box_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
:param crop_n_layers: If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
:param crop_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
:param crop_overlap_ratio: Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
:param crop_n_points_downscale_factor: The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
:param min_mask_region_area: If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
"""
payload = {
"input_image": raw_b64_img(image),
"sam_model_name": sam_model_name,
"processor": processor,
"processor_res": processor_res,
"pixel_perfect": pixel_perfect,
"resize_mode": resize_mode,
"target_W": target_width,
"target_H": target_height
}
autosam_conf = {
"points_per_side": points_per_side,
"points_per_batch": points_per_batch,
"pred_iou_thresh": pred_iou_thresh,
"stability_score_thresh": stability_score_thresh,
"stability_score_offset": stability_score_offset,
"box_nms_thresh": box_nms_thresh,
"crop_n_layers": crop_n_layers,
"crop_nms_thresh": crop_nms_thresh,
"crop_overlap_ratio": crop_overlap_ratio,
"crop_n_points_downscale_factor": crop_n_points_downscale_factor,
"min_mask_region_area": min_mask_region_area
}
url = self.api.get_endpoint("sam/controlnet-seg", baseurl=False)
r = self.api.session.post(url=url, json={"payload": payload, "autosam_conf": autosam_conf}).json()
if r.get("random_seg"):
return SegmentAnythingControlNetSegRandomResult(
message=r.get("msg"),
blended_image=Image.open(io.BytesIO(base64.b64decode(r["blended_image"]))),
random_seg=Image.open(io.BytesIO(base64.b64decode(r["random_seg"]))),
edit_anything_control=Image.open(io.BytesIO(base64.b64decode(r["edit_anything_control"])))
)
else:
return SegmentAnythingControlNetSegNotRandomResult(
message=r.get("msg"),
sem_presam=Image.open(io.BytesIO(base64.b64decode(r["sem_presam"]))),
sem_postsam=Image.open(io.BytesIO(base64.b64decode(r["sem_postsam"]))),
blended_presam=Image.open(io.BytesIO(base64.b64decode(r["blended_presam"]))),
blended_postsam=Image.open(io.BytesIO(base64.b64decode(r["blended_postsam"])))
)
def sam_and_semantic_seg_with_cat_id(
self,
image: Image,
category: str,
sam_model_name: str = "sam_vit_h_4b8939.pth",
processor: str = "seg_ofade20k",
processor_res: int = 512,
pixel_perfect: bool = False,
resize_mode: Optional[int] = 1,
target_width: Optional[int] = None,
target_height: Optional[int] = None,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
min_mask_region_area: int = 0
) -> SegmentAnythingSemanticSegWithCatIdResult:
"""
Get masks generated by SAM + Semantic segmentation with category IDs.
:param image: Input image.
:param category: Category IDs separated by +.
:param sam_model_name: SAM model name.
:param processor: Preprocessor for semantic segmentation.
:param processor_res: Preprocessor resolution.
:param pixel_perfect: Whether to enable pixel perfect.
:param resize_mode: Resize mode from the original shape to target shape.
:param target_width: Target width if the segmentation will be used to generate a new image.
:param target_height: Target height if the segmentation will be used to generate a new image.
:param points_per_side: The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
:param points_per_batch: Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
:param pred_iou_thresh: A filtering threshold in [0,1], using the
model's predicted mask quality.
:param stability_score_thresh: A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
:param stability_score_offset: The amount to shift the cutoff when
calculated the stability score.
:param box_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
:param crop_n_layers: If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
:param crop_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
:param crop_overlap_ratio: Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
:param crop_n_points_downscale_factor: The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
:param min_mask_region_area: If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
"""
payload = {
"input_image": raw_b64_img(image),
"category": category,
"sam_model_name": sam_model_name,
"processor": processor,
"processor_res": processor_res,
"pixel_perfect": pixel_perfect,
"resize_mode": resize_mode,
"target_W": target_width,
"target_H": target_height,
}
autosam_conf = {
"points_per_side": points_per_side,
"points_per_batch": points_per_batch,
"pred_iou_thresh": pred_iou_thresh,
"stability_score_thresh": stability_score_thresh,
"stability_score_offset": stability_score_offset,
"box_nms_thresh": box_nms_thresh,
"crop_n_layers": crop_n_layers,
"crop_nms_thresh": crop_nms_thresh,
"crop_overlap_ratio": crop_overlap_ratio,
"crop_n_points_downscale_factor": crop_n_points_downscale_factor,
"min_mask_region_area": min_mask_region_area
}
url = self.api.get_endpoint("sam/category-mask", baseurl=False)
r = self.api.session.post(url=url, json={"payload": payload, "autosam_conf": autosam_conf}).json()
return SegmentAnythingSemanticSegWithCatIdResult(
message=r.get("msg"),
blended_image=Image.open(io.BytesIO(base64.b64decode(r["blended_image"]))),
mask=Image.open(io.BytesIO(base64.b64decode(r["mask"]))),
masked_image=Image.open(io.BytesIO(base64.b64decode(r["masked_image"]))),
resized_input=Image.open(io.BytesIO(base64.b64decode(r["resized_input"])))
) |