Spaces:
Sleeping
Sleeping
File size: 14,812 Bytes
c6e5e78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import torch
import torch.nn as nn
import math
# RMSNorm is a normalization technique that normalizes the input by dividing by the square root of the variance plus a small number to prevent division by zero
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5): # the number of features/dimensions/embeddings in the input, eps is a small number to prevent division by zero
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size)) # weight is a learnable parameter that scales the input
self.eps = eps
def forward(self, x):
norm = x.pow(2).mean(-1, keepdim=True).sqrt() + self.eps # compute the norm of the input
return x / norm * self.weight # normalize the input by dividing by the norm and scale it by the weight parameter
# RotaryEmbedding is a technique that rotates the input by a learnable angle
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, base=10000, device=None): # dim is the number of features/dimensions/embeddings in the input, base is a base number for the frequency, device is the device to store the buffer
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device).float() / dim)) # compute the inverse frequency
self.register_buffer("inv_freq", inv_freq) # register the inverse frequency as a buffer
def forward(self, x, seq_len):
seq_len = seq_len.to(x.device) # convert seq_len to the device of the input
t = torch.arange(seq_len, device=x.device) # create a tensor of the sequence length
freqs = torch.einsum("i,j->ij", t, self.inv_freq) # compute the frequency by taking the dot product of the sequence length and the inverse frequency
emb = torch.cat((freqs, freqs), dim=-1) # concatenate the frequency with itself
return emb
class LlamaMLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) # create the gate projection layer with the input dimension and the hidden dimension
self.up_proj = nn.Linear(dim, hidden_dim, bias=False) # create the up projection layer with the input dimension and the hidden dimension
self.down_proj = nn.Linear(hidden_dim, dim, bias=False) # create the down projection layer with the hidden dimension and the output dimension
self.act_fn = nn.SiLU() # create the activation function
def forward(self, x):
gated = self.gate_proj(x) # apply the gate projection to the input
hidden = self.up_proj(x) # apply the up projection to the input
return self.down_proj(self.act_fn(gated * hidden)) # apply the activation function to the gated and hidden values and then apply the down projection
class LlamaAttention(nn.Module):
def __init__(self, dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.o_proj = nn.Linear(dim, dim, bias=False)
def forward(self, x):
batch_size, seq_len, dim = x.size() # [batch_size, seq_len, dim] -> [4, 128, 576]
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# Split heads
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_len, head_dim]
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# Scaled dot-product attention
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
attention = torch.softmax(scores, dim=-1)
context = torch.matmul(attention, v)
# Combine heads
context = context.transpose(1, 2).reshape(batch_size, seq_len, dim)
return self.o_proj(context)
class LlamaDecoderLayer(nn.Module):
def __init__(self, dim, hidden_dim, num_heads):
super().__init__()
self.self_attn = LlamaAttention(dim, num_heads)
self.mlp = LlamaMLP(dim, hidden_dim)
self.input_layernorm = LlamaRMSNorm(dim)
self.post_attention_layernorm = LlamaRMSNorm(dim)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = x + residual
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = x + residual
return x
class LlamaModel(nn.Module):
def __init__(self, vocab_size, dim, num_layers, hidden_dim, num_heads):
super().__init__()
self.embed_tokens = nn.Embedding(vocab_size, dim)
self.layers = nn.ModuleList([
LlamaDecoderLayer(dim, hidden_dim, num_heads) for _ in range(num_layers)
])
self.norm = LlamaRMSNorm(dim)
self.rotary_emb = LlamaRotaryEmbedding(dim)
def forward(self, x):
x = self.embed_tokens(x)
for layer in self.layers:
x = layer(x)
return self.norm(x)
class LlamaForCausalLM(nn.Module):
def __init__(self, vocab_size, dim, num_layers, hidden_dim, num_heads):
super().__init__()
self.model = LlamaModel(vocab_size, dim, num_layers, hidden_dim, num_heads)
self.lm_head = nn.Linear(dim, vocab_size, bias=False)
def forward(self, x):
x = self.model(x)
return self.lm_head(x)
def get_model(tokenizer):
vocab_size = tokenizer.vocab_size # Use actual tokenizer vocab size
return LlamaForCausalLM(
vocab_size=vocab_size,
dim=576,
num_layers=30,
hidden_dim=1536,
num_heads=8
)
# model = get_model()
# print(model)
import torch
from torch.utils.data import DataLoader
from datasets import load_dataset
from transformers import AutoTokenizer, get_scheduler
from torch.optim import AdamW
#import wandb
import os
#from model import get_model
#wandb.init(project="smollm-training", name="llama-smollm-corpus")
BATCH_SIZE = 8
SEQ_LEN = 256
LEARNING_RATE = 1e-4
EPOCHS = 5
WARMUP_STEPS = 1000
GRADIENT_CLIP_VAL = 1.0
CHECKPOINT_DIR = "checkpoints"
os.makedirs(CHECKPOINT_DIR, exist_ok=True)
DEVICE = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
def generate_text(
model, tokenizer, prompt, max_length=50, temperature=0.7, top_k=50, device=DEVICE
):
model.eval()
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
with torch.no_grad():
for _ in range(max_length):
outputs = model(input_ids)
next_token_logits = outputs[:, -1, :] / temperature
# Apply top-k sampling
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
probs = torch.softmax(top_k_logits, dim=-1)
# Sample from the filtered distribution
next_token_idx = torch.multinomial(probs, num_samples=1)
next_token = top_k_indices[0, next_token_idx[0]]
if next_token.item() == tokenizer.eos_token_id:
break
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
model.train()
return generated_text
def save_checkpoint(model, optimizer, scheduler, epoch, step, loss, path):
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict() if scheduler else None,
"loss": loss,
"step": step,
},
path,
)
def load_checkpoint(path, model, optimizer, scheduler):
if os.path.exists(path):
# path = './checkpoints/checkpoint_step_5000.pt'
# print(f"Loading checkpoint from {path}")
checkpoint = torch.load(path, weights_only=True)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
if scheduler and checkpoint["scheduler_state_dict"]:
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
return checkpoint["epoch"], checkpoint["step"]
return 0, 0
def count_parameters(model):
"""Count the number of trainable parameters in the model"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
if tokenizer.pad_token is None:
if tokenizer.eos_token:
tokenizer.pad_token = tokenizer.eos_token
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.resize_token_embeddings(len(tokenizer))
dataset = load_dataset(
"HuggingFaceTB/smollm-corpus", "cosmopedia-v2", streaming=True, split="train"
)
def tokenize_function(examples):
return tokenizer(
examples["text"], truncation=True, max_length=SEQ_LEN, padding="max_length"
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
def collate_fn(batch):
input_ids = torch.tensor([item["input_ids"] for item in batch], dtype=torch.long)
attention_mask = torch.tensor(
[item["attention_mask"] for item in batch], dtype=torch.long
)
labels = input_ids.clone()
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
train_loader = DataLoader(
tokenized_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn
)
# Initialize model, optimizer, and scheduler
model = get_model(tokenizer)
model.to(DEVICE)
# Print model parameters
# total_params = count_parameters(model)
# print(f"\nModel Statistics:")
# print(f"Total Parameters: {total_params:,}")
# print(f"Model Size: {total_params * 4 / (1024 * 1024):.2f} MB") # Assuming float32 (4 bytes)
# print(f"Device: {DEVICE}")
# print(f"Batch Size: {BATCH_SIZE}")
# print(f"Sequence Length: {SEQ_LEN}")
# print(f"Learning Rate: {LEARNING_RATE}")
# print("-" * 50 + "\n")
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE, weight_decay=0.01)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=LEARNING_RATE,
total_steps=10000,
pct_start=0.1,
anneal_strategy="cos",
cycle_momentum=False,
)
# Load checkpoint if exists
start_epoch, global_step = load_checkpoint(
f"{CHECKPOINT_DIR}/latest_checkpoint.pt", model, optimizer, lr_scheduler
)
# Sample prompts for evaluation
sample_prompts = [
"The future of artificial intelligence",
"The most important thing in life",
"The best way to learn programming",
]
model.train()
try:
for epoch in range(start_epoch, EPOCHS):
print(f"Epoch {epoch + 1}/{EPOCHS}")
for step, batch in enumerate(train_loader, start=global_step):
# Move batch to device
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
labels = batch["labels"].to(DEVICE)
# Forward pass
outputs = model(input_ids)
logits = outputs.view(-1, tokenizer.vocab_size)
# Calculate loss with label smoothing
loss = torch.nn.functional.cross_entropy(
logits, labels.view(-1), label_smoothing=0.1 # Add label smoothing
)
# Backward pass with gradient clipping
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), GRADIENT_CLIP_VAL)
optimizer.step()
lr_scheduler.step()
# Logging
if step % 10 == 0:
print(
f"Step {step}, Loss: {loss.item():.4f}, LR: {lr_scheduler.get_last_lr()[0]:.2e}"
)
#wandb.log(
# {
# "loss": loss.item(),
# "lr": lr_scheduler.get_last_lr()[0],
# "step": step,
# "epoch": epoch,
# }
#)
# Save checkpoint every 100 steps
#if step % 100 == 0:
# save_checkpoint(
# model,
# optimizer,
# lr_scheduler,
# epoch,
# step,
# loss.item(),
# f"{CHECKPOINT_DIR}/latest_checkpoint.pt",
# )
# Also save numbered checkpoint every 1000 steps
if step % 1000 == 0:
save_checkpoint(
model,
optimizer,
lr_scheduler,
epoch,
step,
loss.item(),
f"{CHECKPOINT_DIR}/checkpoint_step.pt",
)
# Generate sample text every 500 steps with different temperatures
if step % 500 == 0:
print("\n=== Generating Sample Texts ===")
for temp in [0.7, 1.0]: # Try different temperatures
for prompt in sample_prompts:
generated = generate_text(
model,
tokenizer,
prompt,
temperature=temp,
max_length=100, # Increased max length
)
print(f"\nPrompt: {prompt}")
print(f"Temperature: {temp}")
print(f"Generated: {generated}")
#wandb.log(
# {
# f"generated_text_temp_{temp}_{prompt[:20]}": wandb.Html(
# generated
# )
# }
#)
print("\n=== End of Samples ===\n")
model.train()
# Save epoch checkpoint
#save_checkpoint(
# model,
# optimizer,
# lr_scheduler,
# epoch,
# step,
# loss.item(),
# f"{CHECKPOINT_DIR}/checkpoint_epoch.pt",
#)
except KeyboardInterrupt:
print("\nTraining interrupted! Saving checkpoint...")
save_checkpoint(
model,
optimizer,
lr_scheduler,
epoch,
step,
loss.item(),
f"{CHECKPOINT_DIR}/interrupted_checkpoint.pt",
)
print("Training complete!")
#wandb.finish()
|