SMOLLM2_105M / model.py
chbsaikiran's picture
trained a new model as the old model was not performing well
561a912
import torch
import torch.nn as nn
import math
# RMSNorm is a normalization technique that normalizes the input by dividing by the square root of the variance plus a small number to prevent division by zero
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5): # the number of features/dimensions/embeddings in the input, eps is a small number to prevent division by zero
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size)) # weight is a learnable parameter that scales the input
self.eps = eps
def forward(self, x):
norm = x.pow(2).mean(-1, keepdim=True).sqrt() + self.eps # compute the norm of the input
return x / norm * self.weight # normalize the input by dividing by the norm and scale it by the weight parameter
# RotaryEmbedding is a technique that rotates the input by a learnable angle
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, base=10000, device=None): # dim is the number of features/dimensions/embeddings in the input, base is a base number for the frequency, device is the device to store the buffer
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device).float() / dim)) # compute the inverse frequency
self.register_buffer("inv_freq", inv_freq) # register the inverse frequency as a buffer
def forward(self, x, seq_len):
seq_len = seq_len.to(x.device) # convert seq_len to the device of the input
t = torch.arange(seq_len, device=x.device) # create a tensor of the sequence length
freqs = torch.einsum("i,j->ij", t, self.inv_freq) # compute the frequency by taking the dot product of the sequence length and the inverse frequency
emb = torch.cat((freqs, freqs), dim=-1) # concatenate the frequency with itself
return emb
class LlamaMLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) # create the gate projection layer with the input dimension and the hidden dimension
self.up_proj = nn.Linear(dim, hidden_dim, bias=False) # create the up projection layer with the input dimension and the hidden dimension
self.down_proj = nn.Linear(hidden_dim, dim, bias=False) # create the down projection layer with the hidden dimension and the output dimension
self.act_fn = nn.SiLU() # create the activation function
def forward(self, x):
gated = self.gate_proj(x) # apply the gate projection to the input
hidden = self.up_proj(x) # apply the up projection to the input
return self.down_proj(self.act_fn(gated * hidden)) # apply the activation function to the gated and hidden values and then apply the down projection
class LlamaAttention(nn.Module):
def __init__(self, dim, num_heads=8,max_seq_len=2048):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.o_proj = nn.Linear(dim, dim, bias=False)
self.register_buffer("bias", torch.tril(torch.ones(max_seq_len, max_seq_len)).view(1, 1, max_seq_len, max_seq_len))
def forward(self, x):
batch_size, seq_len, dim = x.size() # [batch_size, seq_len, dim] -> [4, 128, 576]
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# Split heads
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_len, head_dim]
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# Scaled dot-product attention
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores = scores.masked_fill(self.bias[:, :, :seq_len, :seq_len] == 0, float('-inf'))
attention = torch.softmax(scores, dim=-1)
context = torch.matmul(attention, v)
# Combine heads
context = context.transpose(1, 2).reshape(batch_size, seq_len, dim)
return self.o_proj(context)
class LlamaDecoderLayer(nn.Module):
def __init__(self, dim, hidden_dim, num_heads,max_position_embeddings):
super().__init__()
self.self_attn = LlamaAttention(dim, num_heads,max_position_embeddings)
self.mlp = LlamaMLP(dim, hidden_dim)
self.input_layernorm = LlamaRMSNorm(dim)
self.post_attention_layernorm = LlamaRMSNorm(dim)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = x + residual
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = x + residual
return x
class LlamaModel(nn.Module):
def __init__(self, vocab_size, dim, num_layers, hidden_dim, num_heads,max_position_embeddings):
super().__init__()
self.embed_tokens = nn.Embedding(vocab_size, dim)
self.layers = nn.ModuleList([
LlamaDecoderLayer(dim, hidden_dim, num_heads,max_position_embeddings) for _ in range(num_layers)
])
self.norm = LlamaRMSNorm(dim)
self.rotary_emb = LlamaRotaryEmbedding(dim)
self.vocab_size = vocab_size
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.wte = nn.Embedding(self.vocab_size, self.dim)
self.wpe = nn.Embedding(self.max_position_embeddings, self.dim)
def forward(self, tokens):
B, T = tokens.size()
assert T <= self.max_position_embeddings, f"Cannot forward sequence of length {T}, block size is only {self.max_position_embeddings}"
pos = torch.arange(0, T, dtype=torch.long, device=tokens.device) # shape (T)
pos_emb = self.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.wte(tokens) # token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb
for layer in self.layers:
x = layer(x)
return self.norm(x)
class LlamaForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
vocab_size = config.vocab_size
dim = config.hidden_size
num_layers = config.num_layers
hidden_dim = config.intermediate_size
num_heads = config.num_attention_heads
max_position_embeddings = config.max_position_embeddings
self.model = LlamaModel(vocab_size, dim, num_layers, hidden_dim, num_heads,max_position_embeddings)
self.lm_head = nn.Linear(dim, vocab_size, bias=False)
def forward(self, x):
x = self.model(x)
return self.lm_head(x)