Spaces:
Build error
Build error
File size: 9,338 Bytes
6c16202 de3c817 6c16202 de3c817 6c16202 6cc0b7a 6c16202 6cc0b7a 6c16202 6cc0b7a 6c16202 de3c817 c2acde2 6c16202 6cc0b7a 6c16202 de3c817 6c16202 6cc0b7a 6c16202 de3c817 6c16202 de3c817 6c16202 de3c817 6c16202 de3c817 6c16202 de3c817 6cc0b7a 6c16202 de3c817 6cc0b7a de3c817 6c16202 de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6cc0b7a de3c817 6c16202 6cc0b7a 6c16202 6cc0b7a 6c16202 de3c817 6c16202 6cc0b7a 6c16202 de3c817 6c16202 de3c817 6c16202 6cc0b7a 6c16202 6cc0b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# --- LIBRARIES ---
import torch
import gradio as gr
import random
import time
from diffusers import AutoPipelineForText2Image, TextToVideoSDPipeline, EulerAncestralDiscreteScheduler
import gc
import os
import imageio
import numpy as np
import threading
from queue import Queue, Empty as QueueEmpty
from PIL import Image
# --- DYNAMIC HARDWARE DETECTION & AUTH ---
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
print("✅ GPU detected. Using CUDA.")
else:
device = "cpu"
torch_dtype = torch.float32
print("⚠️ No GPU detected.")
HF_TOKEN = os.getenv("HF_TOKEN") # Will read the token from Space secrets
if HF_TOKEN is None:
raise ValueError("❌ HF_TOKEN is not set in the environment variables!")
login(token=HF_TOKEN)
# --- CONFIGURATION & STATE ---
available_models = {
"Fast Image (SDXL Turbo)": "stabilityai/sdxl-turbo",
"Quality Image (SDXL)": "stabilityai/stable-diffusion-xl-base-1.0",
"Photorealism (Juggernaut)": "RunDiffusion/Juggernaut-XL-v9",
"Video (Damo-Vilab)": "damo-vilab/text-to-video-ms-1.7b"
}
model_state = { "current_pipe": None, "loaded_model_name": None }
# --- THE FINAL, STABLE GENERATION FUNCTION ---
def generate_media_with_progress(model_key, prompt, negative_prompt, steps, cfg_scale, width, height, seed, num_frames):
global model_state
# --- Model Loading ---
if model_state.get("loaded_model_name") != model_key:
yield {output_image: None, output_video: None, status_textbox: f"Loading {model_key}..."}
if model_state.get("current_pipe"):
pipe_to_delete = model_state.pop("current_pipe", None)
if pipe_to_delete: del pipe_to_delete
gc.collect()
torch.cuda.empty_cache()
model_id = available_models[model_key]
if "Video" in model_key:
pipe = TextToVideoSDPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
else:
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch_dtype, variant="fp16")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
if device == "cuda":
if "Video" not in model_key: pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
model_state["current_pipe"] = pipe
model_state["loaded_model_name"] = model_key
print(f"✅ Model loaded on {device.upper()}.")
pipe = model_state["current_pipe"]
generator = torch.Generator(device).manual_seed(seed)
# --- Generation Logic ---
if "Video" in model_key:
yield {output_image: None, output_video: None, status_textbox: "Generating video..."}
# (Your working video code)
video_frames = pipe(prompt=prompt, num_inference_steps=int(steps), height=320, width=576, num_frames=int(num_frames), generator=generator).frames
video_frames_5d = np.array(video_frames)
video_frames_4d = np.squeeze(video_frames_5d)
video_uint8 = (video_frames_4d * 255).astype(np.uint8)
list_of_frames = [frame for frame in video_uint8]
video_path = f"video_{seed}.mp4"
imageio.mimsave(video_path, list_of_frames, fps=12)
yield {output_image: None, output_video: video_path, status_textbox: f"Video saved! Seed: {seed}"}
else: # Image Generation with your brilliant text-based progress bar
progress_queue = Queue()
def run_pipe():
start_time = time.time()
# This callback correctly accepts all arguments
def progress_callback(step, timestep, latents, **kwargs):
elapsed_time = time.time() - start_time
if elapsed_time > 0:
its_per_sec = (step + 1) / elapsed_time
progress_queue.put(("progress", step + 1, its_per_sec))
return kwargs
try:
final_image = pipe(
prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=int(steps),
guidance_scale=float(cfg_scale), width=int(width), height=int(height),
generator=generator,
callback_on_step_end=progress_callback
).images[0]
progress_queue.put(("final", final_image))
except Exception as e:
print(f"An error occurred in the generation thread: {e}")
progress_queue.put(("error", str(e)))
thread = threading.Thread(target=run_pipe)
thread.start()
total_steps = int(steps)
final_image_result = None
yield {status_textbox: "Generating..."}
while True:
try:
update_type, data = progress_queue.get(timeout=1.0)
if update_type == "final":
final_image_result = data
yield {output_image: final_image_result, status_textbox: f"Generation complete! Seed: {seed}"}
break
elif update_type == "progress":
current_step, its_per_sec = data
progress_percent = (current_step / total_steps) * 100
steps_remaining = total_steps - current_step
eta_seconds = steps_remaining / its_per_sec if its_per_sec > 0 else 0
eta_minutes, eta_seconds_rem = divmod(int(eta_seconds), 60)
status_text = (
f"Generating... {progress_percent:.0f}% ({current_step}/{total_steps}) | "
f"{its_per_sec:.2f}it/s | "
f"ETA: {eta_minutes:02d}:{eta_seconds_rem:02d}"
)
yield {status_textbox: status_text}
elif update_type == "error":
yield {status_textbox: f"Error: {data}"}
break
except QueueEmpty:
if not thread.is_alive():
yield {status_textbox: "Generation failed. Check console for details."}
break
thread.join()
# --- GRADIO UI (Unchanged) ---
with gr.Blocks(theme='gradio/soft') as demo:
# (Your UI code is perfect)
gr.Markdown("# The Generative Media Suite")
gr.Markdown("Create fast images, high-quality images, or short videos. Created by cheeseman182. (note: the speed on the status bar is wrong)")
seed_state = gr.State(-1)
with gr.Row():
with gr.Column(scale=2):
model_selector = gr.Radio(label="Select Model", choices=list(available_models.keys()), value=list(available_models.keys())[0])
prompt_input = gr.Textbox(label="Prompt", lines=4, placeholder="An astronaut riding a horse on Mars, cinematic...")
negative_prompt_input = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, deformed, watermark, text, overblown, high contrast, not photorealistic")
with gr.Accordion("Settings", open=True):
steps_slider = gr.Slider(1, 100, 30, step=1, label="Inference Steps")
cfg_slider = gr.Slider(0.0, 15.0, 7.5, step=0.5, label="Guidance Scale (CFG)")
with gr.Row():
width_slider = gr.Slider(256, 1024, 768, step=64, label="Width")
height_slider = gr.Slider(256, 1024, 768, step=64, label="Height")
num_frames_slider = gr.Slider(12, 48, 24, step=4, label="Video Frames", visible=False)
seed_input = gr.Number(-1, label="Seed (-1 for random)")
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=3):
output_image = gr.Image(label="Image Result", interactive=False, height="60vh", visible=True)
output_video = gr.Video(label="Video Result", interactive=False, height="60vh", visible=False)
status_textbox = gr.Textbox(label="Status", interactive=False)
def update_ui_on_model_change(model_key):
is_video = "Video" in model_key
is_turbo = "Turbo" in model_key
return {
steps_slider: gr.update(interactive=not is_turbo, value=1 if is_turbo else 30),
cfg_slider: gr.update(interactive=not is_turbo, value=0.0 if is_turbo else 7.5),
width_slider: gr.update(visible=not is_video),
height_slider: gr.update(visible=not is_video),
num_frames_slider: gr.update(visible=is_video),
output_image: gr.update(visible=not is_video),
output_video: gr.update(visible=is_video)
}
model_selector.change(update_ui_on_model_change, model_selector, [steps_slider, cfg_slider, width_slider, height_slider, num_frames_slider, output_image, output_video])
click_event = generate_button.click(
fn=lambda s: (s if s != -1 else random.randint(0, 2**32 - 1)),
inputs=seed_input,
outputs=seed_state,
queue=False
).then(
fn=generate_media_with_progress,
inputs=[model_selector, prompt_input, negative_prompt_input, steps_slider, cfg_slider, width_slider, height_slider, seed_state, num_frames_slider],
outputs=[output_image, output_video, status_textbox]
)
demo.launch(share=True) |