File size: 5,110 Bytes
88638a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9998f2
a1ebd12
 
f9998f2
a1ebd12
88638a0
 
 
 
a1ebd12
 
 
 
f9998f2
a1ebd12
f9998f2
fc78750
f9998f2
 
 
 
 
fc78750
f9998f2
 
 
 
 
fc78750
f9998f2
 
 
 
 
fc78750
f9998f2
a1ebd12
88638a0
 
 
7c16cce
88638a0
 
 
 
 
 
 
 
 
 
f9998f2
88638a0
7c16cce
 
 
88638a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c16cce
 
 
 
 
 
 
 
 
 
 
 
 
 
88638a0
 
 
 
 
 
 
 
 
7c16cce
88638a0
 
 
 
 
 
 
 
 
 
 
e93aed5
88638a0
e93aed5
88638a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c16cce
 
a1ebd12
88638a0
 
 
 
 
 
 
a1ebd12
 
 
88638a0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import numpy as np
import spaces
import torch
from cached_path import cached_path
from f5_tts.infer.utils_infer import (
    infer_process,
    load_model,
    load_vocoder,
    preprocess_ref_audio_text,
)
from f5_tts.model import DiT


vocoder = load_vocoder()

# common usage
v1_base_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
v1_small_cfg = dict(dim=768, depth=18, heads=12, ff_mult=2, text_dim=512, conv_layers=4)
alg_vocab_path = str(cached_path("hf://chenxie95/F5-TTS_v1_Small_Algerian/vocab.txt"))

tts_model_choice = "v1-base_zh-en"  # default
tts_model_collections = {
    "v1-base_zh-en": load_model(
        DiT,
        v1_base_cfg,
        str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors")),
        vocab_file=str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/vocab.txt")),
    ),
    "v1-small_alg-64h_300k": load_model(
        DiT,
        v1_small_cfg,
        str(cached_path("hf://chenxie95/F5-TTS_v1_Small_Algerian/64h_model_300000.safetensors")),
        vocab_file=alg_vocab_path,
    ),
    "v1-small_alg-64h_300k_no-ema": load_model(
        DiT,
        v1_small_cfg,
        str(cached_path("hf://chenxie95/F5-TTS_v1_Small_Algerian/64h_model_300000_no-ema.safetensors")),
        vocab_file=alg_vocab_path,
    ),
    "v1-small_alg-64h_200k": load_model(
        DiT,
        v1_small_cfg,
        str(cached_path("hf://chenxie95/F5-TTS_v1_Small_Algerian/64h_model_200000.safetensors")),
        vocab_file=alg_vocab_path,
    ),
    "v1-small_alg-64h_200k_no-ema": load_model(
        DiT,
        v1_small_cfg,
        str(cached_path("hf://chenxie95/F5-TTS_v1_Small_Algerian/64h_model_200000_no-ema.safetensors")),
        vocab_file=alg_vocab_path,
    ),
}


@spaces.GPU
def infer(
    ref_audio_orig,
    ref_text,
    gen_text,
    model,
    seed,
    show_info=gr.Info,
):
    if not ref_audio_orig or not ref_text.strip() or not gen_text.strip():
        gr.Warning("Please ensure [Reference Audio] [Reference Text] [Text to Generate] are all provided.")
        return gr.update(), ref_text, seed

    if seed < 0 or seed > 2**31 - 1:
        gr.Warning("Please set a seed in range 0 ~ 2**31 - 1.")
        seed = np.random.randint(0, 2**31 - 1)
    torch.manual_seed(seed)
    used_seed = seed

    ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)

    final_wave, final_sample_rate, _ = infer_process(
        ref_audio,
        ref_text,
        gen_text,
        tts_model_collections[tts_model_choice],
        vocoder,
        show_info=show_info,
        progress=gr.Progress(),
    )

    return (final_sample_rate, final_wave), ref_text, used_seed


with gr.Blocks() as app_basic_tts:
    with gr.Row():
        with gr.Column():
            ref_wav_input = gr.Audio(label="Reference Audio", type="filepath")
            ref_txt_input = gr.Textbox(label="Reference Text")
            gen_txt_input = gr.Textbox(label="Text to Generate")
            generate_btn = gr.Button("Synthesize", variant="primary")
            with gr.Row():
                randomize_seed = gr.Checkbox(
                    label="Randomize Seed",
                    info="Check to use a random seed for each generation. Uncheck to use the seed specified.",
                    value=True,
                    scale=3,
                )
                seed_input = gr.Number(show_label=False, value=0, precision=0, scale=1)
        audio_output = gr.Audio(label="Synthesized Audio")

    def basic_tts(
        ref_wav_input,
        ref_txt_input,
        gen_txt_input,
        randomize_seed,
        seed_input,
    ):
        if randomize_seed:
            seed_input = np.random.randint(0, 2**31 - 1)

        audio_out, ref_text_out, used_seed = infer(
            ref_wav_input,
            ref_txt_input,
            gen_txt_input,
            tts_model_choice,
            seed_input,
        )
        return audio_out, ref_text_out, used_seed

    ref_wav_input.clear(
        lambda: gr.update(),
        None,
        ref_txt_input,
    )

    generate_btn.click(
        basic_tts,
        inputs=[
            ref_wav_input,
            ref_txt_input,
            gen_txt_input,
            randomize_seed,
            seed_input,
        ],
        outputs=[audio_output, ref_txt_input, seed_input],
    )


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # 🗣️ F5-TTS Online Demo for Dev Test
        
        Upload or record a reference voice, give its transcription text, then order the text to generate and have fun!
        """
    )

    def switch_tts_model(new_choice):
        global tts_model_choice
        tts_model_choice = new_choice

    choose_tts_model = gr.Dropdown(
        choices=[t for t in tts_model_collections], label="Choose TTS Model", value=tts_model_choice
    )

    choose_tts_model.change(
        switch_tts_model,
        inputs=[choose_tts_model],
    )

    gr.TabbedInterface(
        [app_basic_tts],
        ["Basic-TTS"],
    )


if __name__ == "__main__":
    demo.launch()