File size: 6,636 Bytes
3a1da90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff9928
 
3a1da90
 
 
0ff9928
 
 
 
 
 
 
3a1da90
 
 
98c6962
 
 
 
 
3a1da90
 
98c6962
0ff9928
 
98c6962
3a1da90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import dataclasses
import logging
from pathlib import Path
from typing import Optional

import numpy as np
import torch
from colorlog import ColoredFormatter
from PIL import Image
from torchvision.transforms import v2

from meanaudio.data.av_utils import ImageInfo, VideoInfo, read_frames, reencode_with_audio
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, FluxAudio
from meanaudio.model.sequence_config import CONFIG_16K, CONFIG_44K, SequenceConfig
from meanaudio.model.utils.features_utils import FeaturesUtils
from meanaudio.utils.download_utils import download_model_if_needed

log = logging.getLogger()


@dataclasses.dataclass
class ModelConfig:
    model_name: str
    model_path: Path
    vae_path: Path
    bigvgan_16k_path: Optional[Path]
    mode: str

    @property
    def seq_cfg(self) -> SequenceConfig:
        if self.mode == '16k':
            return CONFIG_16K  # get sequence config when calling cfg.seq_cfgs
        elif self.mode == '44k':
            return CONFIG_44K

    def download_if_needed(self):
        raise NotImplementedError("Downloading models is not supported")
        download_model_if_needed(self.model_path)
        download_model_if_needed(self.vae_path)
        if self.bigvgan_16k_path is not None:
            download_model_if_needed(self.bigvgan_16k_path)


fluxaudio_s_full = ModelConfig(model_name='fluxaudio_s_full', 
                           model_path=Path('./weights/fluxaudio_s_full.pth'),  # will be specified later 
                           vae_path=Path('./weights/v1-16.pth'),
                           bigvgan_16k_path=Path('./weights/best_netG.pt'),
                           mode='16k')
meanaudio_s_full = ModelConfig(model_name='meanaudio_s_full', 
                           model_path=Path('./weights/meanaudio_s_full.pth'),  # will be specified later 
                           vae_path=Path('./weights/v1-16.pth'),
                           bigvgan_16k_path=Path('./weights/best_netG.pt'),
                           mode='16k')
meanaudio_s_ac = ModelConfig(model_name='meanaudio_s_ac', 
                           model_path=Path('./weights/meanaudio_s_ac.pth'),  # will be specified later 
                           vae_path=Path('./weights/v1-16.pth'),
                           bigvgan_16k_path=Path('./weights/best_netG.pt'),
                           mode='16k')
meanaudio_l_full = ModelConfig(model_name='meanaudio_l_full', 
                           model_path=Path('./weights/meanaudio_l_full.pth'),  # will be specified later 
                           vae_path=Path('./weights/v1-16.pth'),
                           bigvgan_16k_path=Path('./weights/best_netG.pt'),
                           mode='16k')

all_model_cfg: dict[str, ModelConfig] = {
    'meanaudio_l_full': meanaudio_l_full,
    'meanaudio_s_full': meanaudio_s_full, 
    'meanaudio_s_ac': meanaudio_s_ac, 
    'fluxaudio_s_full': fluxaudio_s_full, 
}


def generate_fm(
    text: Optional[list[str]],
    *,
    negative_text: Optional[list[str]] = None,
    feature_utils: FeaturesUtils,
    net: FluxAudio,
    fm: FlowMatching,
    rng: torch.Generator,
    cfg_strength: float,
) -> torch.Tensor:
    # generate audio with vanilla flow matching

    device = feature_utils.device
    dtype = feature_utils.dtype

    bs = len(text)

    if text is not None:
        text_features, text_features_c = feature_utils.encode_text(text)
    else:
        text_features, text_features_c = net.get_empty_string_sequence(bs)

    if negative_text is not None:
        assert len(negative_text) == bs
        negative_text_features = feature_utils.encode_text(negative_text)
    else:
        negative_text_features = net.get_empty_string_sequence(bs)

    x0 = torch.randn(bs,
                     net.latent_seq_len,
                     net.latent_dim,
                     device=device,
                     dtype=dtype,
                     generator=rng)
    preprocessed_conditions = net.preprocess_conditions(text_features, text_features_c)
    empty_conditions = net.get_empty_conditions(
        bs, negative_text_features=negative_text_features if negative_text is not None else None)

    cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions,
                                                   cfg_strength)
    x1 = fm.to_data(cfg_ode_wrapper, x0)
    x1 = net.unnormalize(x1)
    spec = feature_utils.decode(x1)
    audio = feature_utils.vocode(spec)
    return audio


def generate_mf(
    text: Optional[list[str]],
    *,
    negative_text: Optional[list[str]] = None,
    feature_utils: FeaturesUtils,
    net: MeanAudio,
    mf: MeanFlow,
    rng: torch.Generator,
    cfg_strength: float,
) -> torch.Tensor:
    # generate audio with mean flow
    device = feature_utils.device
    dtype = feature_utils.dtype

    bs = len(text)

    if text is not None:
        text_features, text_features_c = feature_utils.encode_text(text)
    else:
        text_features, text_features_c = net.get_empty_string_sequence(bs)

    if negative_text is not None:
        assert len(negative_text) == bs
        negative_text_features = feature_utils.encode_text(negative_text)
    else:
        negative_text_features = net.get_empty_string_sequence(bs)

    x0 = torch.randn(bs,
                     net.latent_seq_len,
                     net.latent_dim,
                     device=device,
                     dtype=dtype,
                     generator=rng)
    preprocessed_conditions = net.preprocess_conditions(text_features, text_features_c)
    empty_conditions = net.get_empty_conditions(
        bs, negative_text_features=negative_text_features if negative_text is not None else None)

    cfg_ode_wrapper = lambda t, r, x: net.ode_wrapper(t, r, x, preprocessed_conditions, empty_conditions,
                                                      cfg_strength)
    x1 = mf.to_data(cfg_ode_wrapper, x0)
    x1 = net.unnormalize(x1)
    spec = feature_utils.decode(x1)
    audio = feature_utils.vocode(spec)
    return audio


LOGFORMAT = "[%(log_color)s%(levelname)-8s%(reset)s]: %(log_color)s%(message)s%(reset)s"


def setup_eval_logging(log_level: int = logging.INFO):
    logging.root.setLevel(log_level) # set up root logger <=> logging.getLogger().setLevel(log_level) 
    formatter = ColoredFormatter(LOGFORMAT)
    stream = logging.StreamHandler()  # to Console
    stream.setLevel(log_level)
    stream.setFormatter(formatter)
    log = logging.getLogger() 
    log.setLevel(log_level)
    log.addHandler(stream)