File size: 2,241 Bytes
1503dc9
 
 
 
 
 
e30adea
1503dc9
 
4b957b8
1503dc9
cb7401f
1503dc9
 
cb7401f
 
 
 
 
 
1503dc9
 
cb7401f
1503dc9
cb7401f
1503dc9
 
 
 
 
cb7401f
1503dc9
 
 
 
 
 
ef529cc
1503dc9
cb7401f
 
 
 
 
 
 
 
1503dc9
cb7401f
1503dc9
 
 
 
 
cb7401f
1503dc9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
import textstat
from langchain_huggingface import HuggingFaceEndpoint
import os

# Set up Hugging Face API token and model endpoint
HF_TOKEN = os.getenv("HF_TOKEN")  # Ensure you have your token set in your environment
llm = HuggingFaceEndpoint(
    repo_id="mistralai/Mistral-7B-Instruct-v0.3",
    huggingfacehub_api_token=HF_TOKEN,
    temperature=0.7,
    max_new_tokens=500
)

def generate_keywords(content):
    prompt = f"Generate a list of most appropriate 10 SEO keywords for the following content:\n\n{content}"
    response = llm(prompt)
    keywords = response.split(",")  # Assuming the model returns a comma-separated list
    return [keyword.strip() for keyword in keywords]
    
def check_and_improve_seo(content):
    # Define basic SEO criteria
    keywords = generate_keywords(content)
    keyword_found = any(keyword.lower() in content.lower() for keyword in keywords)
        
    # Check readability score
    readability_score = textstat.flesch_reading_ease(content)
    
    # Prepare a prompt for the LLM to improve content
    prompt = (
        "Optimize the following content for SEO. Ensure it includes appropriate keywords in text, "
        "is easy to read, and meets SEO best practices.\n\n"
        "Content:\n" + content
    )
    
    # Generate SEO-optimized content using the Hugging Face model
    response = llm(prompt)
    optimized_content = response

    # Format the output as plain text
    output = (
     #   f"**Generated Keywords:**\n\n"
        #f"Relevant SEO keywords: {', '.join(keywords)}\n\n"
        f"**Keywords Present:** {keyword_found}\n\n"
        f"**Readability Score (Flesch):** {readability_score}\n\n"
        f"**Optimized Content:**\n{optimized_content}"
    )
    
    return output

# Define Gradio interface
interface = gr.Interface(
    fn=check_and_improve_seo,
    inputs=gr.Textbox(lines=10, placeholder="Enter your content here..."),
    outputs="text",  # Change output to 'text' to return plain text
    title="SEO Compatibility Checker and Optimizer",
    description="Check if the given content is SEO compatible and get an improved version based on SEO best practices."
)

# Launch the app
if __name__ == "__main__":
    interface.launch()