Update app.py
Browse files
app.py
CHANGED
|
@@ -1,153 +1,39 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# "aspect_ratio": aspect_ratio,
|
| 41 |
-
# "num_inference_steps": steps,
|
| 42 |
-
# "guidance_scale": cfg_scale,
|
| 43 |
-
# "lora_scale": strength,
|
| 44 |
-
# "seed": seed,
|
| 45 |
-
# "disable_safety_checker": True
|
| 46 |
-
# }
|
| 47 |
-
|
| 48 |
-
output = replicate.run(
|
| 49 |
-
"lucataco/flux-dev-lora:a22c463f11808638ad5e2ebd582e07a469031f48dd567366fb4c6fdab91d614d",
|
| 50 |
-
input=input
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
print(output)
|
| 54 |
-
|
| 55 |
-
return output[0], seed
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
css = """
|
| 60 |
-
#app-container {
|
| 61 |
-
max-width: 600px;
|
| 62 |
-
margin-left: auto;
|
| 63 |
-
margin-right: auto;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
# Assuming `prompt` and other flagged data inputs need to be truncated.
|
| 68 |
-
# def truncate_prompts(*args):
|
| 69 |
-
# # Truncate the prompts (args[0] is text_prompt, args[1] is negative_prompt)
|
| 70 |
-
# truncated_text_prompt = args[0][:200] if isinstance(args[0], str) else args[0]
|
| 71 |
-
# # truncated_negative_prompt = args[1][:200] if isinstance(args[1], str) else args[1]
|
| 72 |
-
# return (truncated_text_prompt, *args[1:])
|
| 73 |
-
# Return the modified list with the truncated prompts
|
| 74 |
-
# return (truncated_text_prompt, truncated_negative_prompt, *args[2:])
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
examples = [
|
| 78 |
-
"KAMALINEE, A charismatic speaker is captured mid-speech. She has long, tousled brown hair that’s slightly messy on top. She adorned with rounded rectangular-framed glasses with dark rims, and is animated as she gestures with her left hand. She is holding a black microphone in her right hand, speaking passionately. The woman is wearing a light grey sweater over a white t-shirt. She’s also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text “Kamalinee”. Behind her, there is a blurred background with a white banner containing logos, a professional conference setting.",
|
| 79 |
-
"KAMALINEE, An image of a woman. She dressed in a red and navy plaid shirt with the top unbuttoned to show a white undershirt, and the sleeves rolled up to the forearms. The woman is casually leaning against a weathered blue door frame with peeling paint, adding a rustic charm to the scene. Her arms are crossed or resting in front of her, and she has a soft, contemplative expression on her face.",
|
| 80 |
-
"Digital illustration style, realistic, drunk beautiful woman KAMALINEE, drinking whiskey, side view, short hair, glossy red lips, moist eyes, v-neck collared shirt, dingy outdoor restaurant background, moonlight, backlighting",
|
| 81 |
-
"an elegant and timeless portrait of a woman KAMALINEE, exuding grace and sophistication",
|
| 82 |
-
"A woman KAMALINEE dressed as a pirate, in full growth, clear facial features, wearing a 3-cornered hat and black eye patch with hyper realistic background water, photograph taken with 35mm lens, f/1.8, sunlight, natural lighting",
|
| 83 |
-
]
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
HF_TOKEN = os.getenv("SECRET_TOKEN")
|
| 87 |
-
callback = gr.HuggingFaceDatasetSaver(HF_TOKEN, "rmx-data")
|
| 88 |
-
|
| 89 |
-
# callback.setup([gr.Textbox, gr.Textbox, gr.Slider, gr.Slider, gr.Radio, gr.Slider, gr.Slider, gr.Image],
|
| 90 |
-
# "flagged_data_points")
|
| 91 |
-
|
| 92 |
-
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
| 93 |
-
gr.HTML("<center><h1>RMX.1-Dev</h1></center>")
|
| 94 |
-
with gr.Column(elem_id="app-container"):
|
| 95 |
-
with gr.Row():
|
| 96 |
-
with gr.Column(elem_id="prompt-container"):
|
| 97 |
-
with gr.Row():
|
| 98 |
-
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
| 99 |
-
with gr.Row():
|
| 100 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 101 |
-
# negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
|
| 102 |
-
aspect_ratio = gr.Radio(label="Aspect ratio", value="1:1", choices=["1:1", "4:5", "2:3", "3:4","9:16", "4:3", "16:9"])
|
| 103 |
-
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
|
| 104 |
-
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
| 105 |
-
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 106 |
-
strength = gr.Slider(label="Strength", value=0.95, minimum=0, maximum=1, step=0.001)
|
| 107 |
-
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
| 108 |
-
|
| 109 |
-
with gr.Row():
|
| 110 |
-
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
| 111 |
-
with gr.Row():
|
| 112 |
-
image_output = gr.Image(type="pil", label="Image Output",interactive=False, show_download_button=True, elem_id="gallery")
|
| 113 |
-
|
| 114 |
-
with gr.Row():
|
| 115 |
-
seed_output = gr.Textbox(label="Seed Used", interactive=False, show_copy_button = True, elem_id="seed-output")
|
| 116 |
-
|
| 117 |
-
# Define examples that fill only the text_prompt input
|
| 118 |
-
gr.Examples(
|
| 119 |
-
examples = examples,
|
| 120 |
-
fn = query,
|
| 121 |
-
inputs = [text_prompt],
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
# We can choose which components to flag -- in this case, we'll flag all of them-, steps, cfg, method, seed, strength, image_output
|
| 129 |
-
# text_button.click(lambda *args: callback.flag(truncate_prompts(*args)),
|
| 130 |
-
# [text_prompt, negative_prompt,steps, cfg, method, seed, strength, image_output], None, preprocess=False, success=True)
|
| 131 |
-
|
| 132 |
-
# Update the button click to first generate the image, then flag it
|
| 133 |
-
|
| 134 |
-
callback.setup([text_prompt, aspect_ratio, steps, cfg, seed_output, strength, image_output],
|
| 135 |
-
"flagged_data_points")
|
| 136 |
-
|
| 137 |
-
def truncate_prompts(*args):
|
| 138 |
-
truncated_text_prompt = args[0][:200] if isinstance(args[0], str) else args[0]
|
| 139 |
-
return (truncated_text_prompt, *args[1:])
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
text_button.click(
|
| 143 |
-
query,
|
| 144 |
-
inputs=[text_prompt, aspect_ratio, steps, cfg, seed, strength],
|
| 145 |
-
outputs=[image_output,seed_output]
|
| 146 |
-
).then(
|
| 147 |
-
lambda *args: callback.flag(truncate_prompts(*args)),
|
| 148 |
-
inputs=[text_prompt, aspect_ratio, steps, cfg, seed_output, strength, image_output],
|
| 149 |
-
outputs=None,
|
| 150 |
-
preprocess=False
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
app.launch(show_api=False, share=False)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
| 4 |
+
from safetensors.torch import load_file
|
| 5 |
+
|
| 6 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
| 7 |
+
lora_path = "https://huggingface.co/codermert/model_malika/resolve/main/sarah-lora.safetensors"
|
| 8 |
+
|
| 9 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 10 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 11 |
+
pipe = pipe.to("cuda")
|
| 12 |
+
|
| 13 |
+
# LoRA dosyasını yükle
|
| 14 |
+
state_dict = load_file(lora_path)
|
| 15 |
+
pipe.unet.load_attn_procs(state_dict)
|
| 16 |
+
|
| 17 |
+
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
|
| 18 |
+
image = pipe(
|
| 19 |
+
prompt=prompt,
|
| 20 |
+
negative_prompt=negative_prompt,
|
| 21 |
+
guidance_scale=guidance_scale,
|
| 22 |
+
num_inference_steps=num_inference_steps
|
| 23 |
+
).images[0]
|
| 24 |
+
return image
|
| 25 |
+
|
| 26 |
+
iface = gr.Interface(
|
| 27 |
+
fn=generate_image,
|
| 28 |
+
inputs=[
|
| 29 |
+
gr.Textbox(label="Prompt"),
|
| 30 |
+
gr.Textbox(label="Negative Prompt"),
|
| 31 |
+
gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7.5),
|
| 32 |
+
gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=50)
|
| 33 |
+
],
|
| 34 |
+
outputs=gr.Image(label="Generated Image"),
|
| 35 |
+
title="Stable Diffusion with LoRA",
|
| 36 |
+
description="Generate images using Stable Diffusion v1.5 with a custom LoRA model."
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|