File size: 6,032 Bytes
8ba64a4
 
9bb2fc2
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
e85027d
8ba64a4
9645c29
 
8ba64a4
9645c29
8ba64a4
9645c29
 
 
 
8ba64a4
0dd08cb
 
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638f225
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd08cb
8ba64a4
 
 
 
0dd08cb
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9645c29
 
e85027d
8ba64a4
 
 
 
e85027d
 
 
8ba64a4
 
 
e85027d
 
 
 
 
 
 
8ba64a4
 
e85027d
 
 
 
8ba64a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85027d
 
 
8ba64a4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import json
import os
from typing import Any, Dict, List, Type, Union

import anthropic
import weave
from anthropic import APIStatusError, AsyncAnthropic
from pydantic import BaseModel

from app.config import get_settings
from app.core import errors
from app.core.errors import BadRequestError, VendorError
from app.core.prompts import get_prompts
from app.services.base import BaseAttributionService
from app.utils.converter import product_data_to_str
from app.utils.image_processing import get_data_format, get_image_data
from app.utils.logger import exception_to_str, setup_logger

ENV = os.getenv("ENV", "LOCAL")
if ENV == "LOCAL":  # local or demo
    weave_project_name = "cfai/attribution-exp"
elif ENV == "DEV":
    weave_project_name = "cfai/attribution-dev"
elif ENV == "UAT":
    weave_project_name = "cfai/attribution-uat"
elif ENV == "PROD":
    pass

# if ENV != "PROD":
#     weave.init(project_name=weave_project_name)
settings = get_settings()
prompts = get_prompts()
logger = setup_logger(__name__)


class AnthropicService(BaseAttributionService):
    def __init__(self):
        self.client = AsyncAnthropic(api_key=settings.ANTHROPIC_API_KEY)

    @weave.op
    async def extract_attributes(

        self,

        attributes_model: Type[BaseModel],

        ai_model: str,

        img_urls: List[str],

        product_taxonomy: str,

        product_data: Dict[str, Union[str, List[str]]],

        pil_images: List[Any] = None,  # do not remove, this is for weave

        img_paths: List[str] = None,

    ) -> Dict[str, Any]:
        logger.info("Extracting info via Anthropic...")
        tools = [
            {
                "name": "extract_garment_info",
                "description": "Extracts key information from the image.",
                "input_schema": attributes_model.model_json_schema(),
                "cache_control": {"type": "ephemeral"},
            }
        ]

        if img_urls is not None:
            image_messages = [
                {
                    "type": "image",
                    "source": {"type": "url", "url": img_url},
                }
                for img_url in img_urls
            ]
        elif img_paths is not None:
            image_messages = [
                {
                    "type": "image",
                    "source": {
                        "type": "base64",
                        "media_type": f"image/{get_data_format(img_path)}",
                        "data": get_image_data(img_path),
                    },
                }
                for img_path in img_paths
            ]
        else:
            # this is not expected, raise some errors here later.
            pass

        system_message = [{"type": "text", "text": prompts.GET_PERCENTAGE_SYSTEM_MESSAGE}]

        text_messages = [
            {
                "type": "text",
                "text": prompts.GET_PERCENTAGE_HUMAN_MESSAGE.format(
                    product_taxonomy=product_taxonomy,
                    product_data=product_data_to_str(product_data),
                ),
            }
        ]

        messages = [{"role": "user", "content": text_messages + image_messages}]

        # try:
        try:
            response = await self.client.messages.create(
                model=ai_model,
                extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"},
                max_tokens=2048,
                system=system_message,
                tools=tools,
                messages=messages,
                # temperature=0.0,
                # top_p=1e-45,
                top_k=1,
            )
        except anthropic.BadRequestError as e:
            raise BadRequestError(e.message)
        except Exception as e:
            raise VendorError(
                errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
            )

        for content in response.content:
            if content.type == "tool_use":
                if content.input is None or not content.input:
                    raise VendorError(
                        errors.VENDOR_THROW_ERROR.format(
                            error_message="content.input is None or content.input is empty"
                        )
                    )

                return content.input

        raise VendorError(
            errors.VENDOR_THROW_ERROR.format(error_message="No tool_use found")
        )

    @weave.op
    async def follow_schema(self, schema, data):
        logger.info("Following structure via Anthropic...")
        tools = [
            {
                "name": "extract_garment_info",
                "description": prompts.FOLLOW_SCHEMA_HUMAN_MESSAGE,
                "input_schema": schema,
                "cache_control": {"type": "ephemeral"},
            }
        ]

        text_messages = [
            {
                "type": "text",
                "text": prompts.FOLLOW_SCHEMA_HUMAN_MESSAGE.format(json_info=data),
            }
        ]

        system_message = [
            {"type": "text", "text": prompts.FOLLOW_SCHEMA_SYSTEM_MESSAGE}
        ]

        messages = [{"role": "user", "content": text_messages}]
        try:
            response = await self.client.messages.create(
                model=settings.ANTHROPIC_DEFAULT_MODEL,
                extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"},
                max_tokens=2048,
                system=system_message,
                tools=tools,
                messages=messages,
            )
        except Exception as e:
            raise VendorError(
                errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
            )

        for content in response.content:
            if content.type == "tool_use":
                return content.input["json_info"]

        return {"status": "ERROR: no tool_use found"}