thanhnt-cf's picture
fix percentages
b652f9c
import json
import os
from typing import Any, Dict, List, Type, Union
import openai
import weave
from openai import AsyncOpenAI
from pydantic import BaseModel
from app.utils.converter import product_data_to_str
from app.utils.image_processing import (
get_data_format,
get_image_base64_and_type,
get_image_data,
)
from app.utils.logger import exception_to_str, setup_logger
from ..config import get_settings
from ..core import errors
from ..core.errors import BadRequestError, VendorError
from ..core.prompts import get_prompts
from .base import BaseAttributionService
ENV = os.getenv("ENV", "LOCAL")
if ENV == "LOCAL": # local or demo
weave_project_name = "cfai/attribution-exp"
elif ENV == "DEV":
weave_project_name = "cfai/attribution-dev"
elif ENV == "UAT":
weave_project_name = "cfai/attribution-uat"
elif ENV == "PROD":
pass
# if ENV != "PROD":
# weave.init(project_name=weave_project_name)
settings = get_settings()
prompts = get_prompts()
logger = setup_logger(__name__)
def get_response_format(json_schema: dict[str, any]) -> dict[str, any]:
# OpenAI requires each $def have to have additionalProperties set to False
json_schema["additionalProperties"] = False
# check if the schema has a $defs key
if "$defs" in json_schema:
for keys in json_schema["$defs"].keys():
json_schema["$defs"][keys]["additionalProperties"] = False
response_format = {
"type": "json_schema",
"json_schema": {"strict": True, "name": "GarmentSchema", "schema": json_schema},
}
return response_format
class OpenAIService(BaseAttributionService):
def __init__(self):
self.client = AsyncOpenAI(api_key=settings.OPENAI_API_KEY)
@weave.op
async def extract_attributes(
self,
attributes_model: Type[BaseModel],
ai_model: str,
img_urls: List[str],
product_taxonomy: str,
product_data: Dict[str, Union[str, List[str]]],
pil_images: List[Any] = None, # do not remove, this is for weave
img_paths: List[str] = None,
appended_prompt: str = "",
) -> Dict[str, Any]:
print("Prompt: ")
print(prompts.GET_PERCENTAGE_HUMAN_MESSAGE.format(product_taxonomy=product_taxonomy, product_data=product_data_to_str(product_data)) + appended_prompt)
text_content = [
{
"type": "text",
"text": prompts.EXTRACT_INFO_HUMAN_MESSAGE.format(
product_taxonomy=product_taxonomy,
product_data=product_data_to_str(product_data),
) + appended_prompt,
},
]
if img_urls is not None:
base64_data_list = []
data_format_list = []
for img_url in img_urls:
base64_data, data_format = get_image_base64_and_type(img_url)
base64_data_list.append(base64_data)
data_format_list.append(data_format)
image_content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/{data_format};base64,{base64_data}",
},
}
for base64_data, data_format in zip(base64_data_list, data_format_list)
]
elif img_paths is not None:
image_content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/{get_data_format(img_path)};base64,{get_image_data(img_path)}",
},
}
for img_path in img_paths
]
try:
logger.info("Extracting info via OpenAI...")
response = await self.client.beta.chat.completions.parse(
model=ai_model,
messages=[
{
"role": "system",
"content": prompts.GET_PERCENTAGE_SYSTEM_MESSAGE,
},
{
"role": "user",
"content": text_content + image_content,
},
],
max_tokens=1000,
response_format=attributes_model,
logprobs=False,
# top_logprobs=2,
# temperature=0.0,
top_p=1e-45,
)
except openai.BadRequestError as e:
error_message = exception_to_str(e)
raise BadRequestError(error_message)
except Exception as e:
raise VendorError(
errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
)
try:
content = response.choices[0].message.content
parsed_data = json.loads(content)
except:
raise VendorError(errors.VENDOR_ERROR_INVALID_JSON)
return parsed_data
async def reevaluate_atributes(
self,
attributes_model: Type[BaseModel],
ai_model: str,
img_urls: List[str],
product_taxonomy: str,
product_data: str,
pil_images: List[Any] = None, # do not remove, this is for weave
img_paths: List[str] = None,
appended_prompt: str = "",
) -> Dict[str, Any]:
print("Prompt: ")
print(prompts.REEVALUATE_HUMAN_MESSAGE.format(product_taxonomy=product_taxonomy, product_data=product_data) + appended_prompt)
text_content = [
{
"type": "text",
"text": prompts.REEVALUATE_HUMAN_MESSAGE.format(
product_taxonomy=product_taxonomy,
product_data=product_data,
) + appended_prompt,
},
]
if img_urls is not None:
base64_data_list = []
data_format_list = []
for img_url in img_urls:
base64_data, data_format = get_image_base64_and_type(img_url)
base64_data_list.append(base64_data)
data_format_list.append(data_format)
image_content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/{data_format};base64,{base64_data}",
},
}
for base64_data, data_format in zip(base64_data_list, data_format_list)
]
elif img_paths is not None:
image_content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/{get_data_format(img_path)};base64,{get_image_data(img_path)}",
},
}
for img_path in img_paths
]
try:
logger.info("Extracting info via OpenAI...")
response = await self.client.beta.chat.completions.parse(
model=ai_model,
messages=[
{
"role": "system",
"content": prompts.REEVALUATE_SYSTEM_MESSAGE,
},
{
"role": "user",
"content": text_content + image_content,
},
],
max_tokens=1000,
response_format=attributes_model,
logprobs=False,
# top_logprobs=2,
# temperature=0.0,
top_p=1e-45,
)
except openai.BadRequestError as e:
error_message = exception_to_str(e)
raise BadRequestError(error_message)
except Exception as e:
raise VendorError(
errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
)
try:
content = response.choices[0].message.content
parsed_data = json.loads(content)
except:
raise VendorError(errors.VENDOR_ERROR_INVALID_JSON)
return parsed_data
@weave.op
async def follow_schema(
self, schema: Dict[str, Any], data: Dict[str, Any]
) -> Dict[str, Any]:
logger.info("Following structure via OpenAI...")
text_content = [
{
"type": "text",
"text": prompts.FOLLOW_SCHEMA_HUMAN_MESSAGE.format(json_info=data),
},
]
try:
response = await self.client.beta.chat.completions.parse(
model="gpt-4o-2024-11-20",
messages=[
{
"role": "system",
"content": prompts.FOLLOW_SCHEMA_SYSTEM_MESSAGE,
},
{
"role": "user",
"content": text_content,
},
],
max_tokens=1000,
response_format=get_response_format(schema),
logprobs=False,
# top_logprobs=2,
temperature=0.0,
)
except Exception as e:
raise VendorError(
errors.VENDOR_THROW_ERROR.format(error_message=exception_to_str(e))
)
if response.choices[0].message.refusal:
logger.info("OpenAI refused to respond to the request")
return {"status": "refused"}
try:
content = response.choices[0].message.content
parsed_data = json.loads(content)
except:
raise ValueError(errors.VENDOR_ERROR_INVALID_JSON)
return parsed_data