crespo12 commited on
Commit
ddceb33
·
1 Parent(s): d924411
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -1,22 +1,29 @@
1
- from fastapi import FastAPI
 
2
  from pydantic import BaseModel
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import torch
5
 
6
  app = FastAPI()
7
 
 
 
 
8
  # Charger le modèle
9
  model_name = "google/medgemma-4b-pt"
10
  tokenizer = AutoTokenizer.from_pretrained(model_name)
11
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
12
 
13
- # Requête attendue
14
- class Request(BaseModel):
15
  prompt: str
16
 
17
  @app.post("/generate")
18
- def generate(request: Request):
19
- inputs = tokenizer(request.prompt, return_tensors="pt").to(model.device)
 
 
 
20
  with torch.no_grad():
21
  outputs = model.generate(**inputs, max_new_tokens=100)
22
  result = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
1
+ import os
2
+ from fastapi import FastAPI, Request, HTTPException, Header
3
  from pydantic import BaseModel
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
  import torch
6
 
7
  app = FastAPI()
8
 
9
+ # Récupérer le token depuis les variables d’environnement
10
+ API_TOKEN = os.environ.get("API_TOKEN")
11
+
12
  # Charger le modèle
13
  model_name = "google/medgemma-4b-pt"
14
  tokenizer = AutoTokenizer.from_pretrained(model_name)
15
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
16
 
17
+ # Modèle de requête
18
+ class GenerationRequest(BaseModel):
19
  prompt: str
20
 
21
  @app.post("/generate")
22
+ async def generate(request_data: GenerationRequest, authorization: str = Header(None)):
23
+ if authorization != f"Bearer {API_TOKEN}":
24
+ raise HTTPException(status_code=401, detail="Unauthorized")
25
+
26
+ inputs = tokenizer(request_data.prompt, return_tensors="pt").to(model.device)
27
  with torch.no_grad():
28
  outputs = model.generate(**inputs, max_new_tokens=100)
29
  result = tokenizer.decode(outputs[0], skip_special_tokens=True)