xx
Browse files
app.py
CHANGED
@@ -1,22 +1,29 @@
|
|
1 |
-
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
|
|
|
|
8 |
# Charger le modèle
|
9 |
model_name = "google/medgemma-4b-pt"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
12 |
|
13 |
-
#
|
14 |
-
class
|
15 |
prompt: str
|
16 |
|
17 |
@app.post("/generate")
|
18 |
-
def generate(
|
19 |
-
|
|
|
|
|
|
|
20 |
with torch.no_grad():
|
21 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
22 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI, Request, HTTPException, Header
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Récupérer le token depuis les variables d’environnement
|
10 |
+
API_TOKEN = os.environ.get("API_TOKEN")
|
11 |
+
|
12 |
# Charger le modèle
|
13 |
model_name = "google/medgemma-4b-pt"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
16 |
|
17 |
+
# Modèle de requête
|
18 |
+
class GenerationRequest(BaseModel):
|
19 |
prompt: str
|
20 |
|
21 |
@app.post("/generate")
|
22 |
+
async def generate(request_data: GenerationRequest, authorization: str = Header(None)):
|
23 |
+
if authorization != f"Bearer {API_TOKEN}":
|
24 |
+
raise HTTPException(status_code=401, detail="Unauthorized")
|
25 |
+
|
26 |
+
inputs = tokenizer(request_data.prompt, return_tensors="pt").to(model.device)
|
27 |
with torch.no_grad():
|
28 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
29 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|