Spaces:
Running
Running
import gradio as gr | |
from langchain.chains import LLMChain | |
from langchain.prompts import PromptTemplate | |
from langchain.chat_models import ChatOpenAI | |
# Replace this with a CPU-compatible LLM for Hugging Face Spaces | |
llm = ChatOpenAI(temperature=0.2, model="gpt-3.5-turbo") # Replace with HuggingFacePipeline if no OpenAI key | |
prompt_template = PromptTemplate( | |
template=""" | |
You are a professional resume screener AI. | |
Below is a resume and a job description. | |
Evaluate how well the resume fits the job and provide a plain text output with: | |
- Match Score (0-100) | |
- Key Skills matched | |
- Justification for the score | |
Resume: | |
{resume} | |
Job Description: | |
{job} | |
Response: | |
""", | |
input_variables=["resume", "job"] | |
) | |
chain = LLMChain(llm=llm, prompt=prompt_template) | |
def screen_resume(resume, jd): | |
try: | |
response = chain.run(resume=resume, job=jd) | |
return response | |
except Exception as e: | |
return f"Error: {str(e)}" | |
iface = gr.Interface( | |
fn=screen_resume, | |
inputs=[ | |
gr.Textbox(label="Paste Resume Text", lines=15, placeholder="Paste plain text from resume..."), | |
gr.Textbox(label="Paste Job Description", lines=10, placeholder="Paste plain text from JD..."), | |
], | |
outputs=gr.Textbox(label="Analysis Result"), | |
title="Resume Screener Agent", | |
description="Upload a resume and a job description. The AI will match and score them." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |