Spaces:
Sleeping
Sleeping
| from fastapi import APIRouter | |
| from datetime import datetime | |
| from datasets import load_dataset | |
| from sklearn.metrics import accuracy_score | |
| import random | |
| from .utils.evaluation import TextEvaluationRequest | |
| from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
| import os | |
| import logging | |
| import numpy as np | |
| print(os.getcwd()) | |
| # | |
| from sentence_transformers import SentenceTransformer | |
| from xgboost import XGBClassifier | |
| import pickle | |
| import xgboost as xgb | |
| #logging | |
| logging.basicConfig(level=logging.INFO) | |
| logging.info("LAS ESTRELLAS!!!!!") | |
| router = APIRouter() | |
| DESCRIPTION = "Random Baseline" | |
| ROUTE = "/text" | |
| async def evaluate_text(request: TextEvaluationRequest): | |
| """ | |
| Evaluate text classification for climate disinformation detection. | |
| Current Model: Random Baseline | |
| - Makes random predictions from the label space (0-7) | |
| - Used as a baseline for comparison | |
| """ | |
| # Get space info | |
| username, space_url = get_space_info() | |
| # Define the label mapping | |
| LABEL_MAPPING = { | |
| "0_not_relevant": 0, | |
| "1_not_happening": 1, | |
| "2_not_human": 2, | |
| "3_not_bad": 3, | |
| "4_solutions_harmful_unnecessary": 4, | |
| "5_science_unreliable": 5, | |
| "6_proponents_biased": 6, | |
| "7_fossil_fuels_needed": 7 | |
| } | |
| # Load and prepare the dataset | |
| dataset = load_dataset(request.dataset_name) | |
| # Convert string labels to integers | |
| dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
| # Split dataset | |
| train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
| test_dataset = train_test["test"] | |
| # Start tracking emissions | |
| tracker.start() | |
| tracker.start_task("inference") | |
| #-------------------------------------------------------------------------------------------- | |
| # Load a pre-trained Sentence-BERT model | |
| print("loading model") | |
| model = SentenceTransformer('sentence-transformers/all-MPNET-base-v2', device='cpu') | |
| #load the models | |
| with open("xgb_bin.pkl","rb") as f: | |
| xgb_bin = pickle.load(f) | |
| with open("xgb_multi.pkl","rb") as f: | |
| xgb_multi = pickle.load(f) | |
| logging.info("generating embedding") | |
| # Generate sentence embeddings | |
| sentence_embeddings = model.encode(test_dataset["quote"]) | |
| logging.info(" embedding done") | |
| X_train = sentence_embeddings.copy() | |
| y_train = np.array(test_dataset["label"].copy()) | |
| #binary | |
| y_train_binary = y_train.copy() | |
| y_train_binary[y_train_binary != 0] = 1 | |
| #multi class | |
| X_train_multi = X_train[y_train != 0] | |
| y_train_multi = y_train[y_train != 0] | |
| logging.info(f"Xtrain_multi_shape:{X_train_multi.shape}") | |
| logging.info(f"Xtrain shape:{X_train.shape}") | |
| #predictions | |
| y_pred_bin = xgb_bin.predict(X_train) | |
| y_pred_multi = xgb_multi.predict(X_train_multi.reshape(-1,768)) + 1 | |
| logging.info(f"y_pred_bin:{y_pred_bin.shape}") | |
| logging.info(f"y_pred_multi shape:{y_pred_multi.shape}") | |
| y_pred_bin[y_train_binary==1] = y_pred_multi | |
| #predictions = xgb.predict(embeddings) | |
| # Make random predictions (placeholder for actual model inference) | |
| true_labels = test_dataset["label"] | |
| #predictions = xgb.predict(embeddings) | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE STOPS HERE | |
| #-------------------------------------------------------------------------------------------- | |
| # Stop tracking emissions | |
| emissions_data = tracker.stop_task() | |
| # Calculate accuracy | |
| accuracy = accuracy_score(true_labels, y_pred_bin) | |
| logging.info(f"Accuracy : {accuracy}") | |
| # Prepare results dictionary | |
| results = { | |
| "username": username, | |
| "space_url": space_url, | |
| "submission_timestamp": datetime.now().isoformat(), | |
| "model_description": DESCRIPTION, | |
| "accuracy": float(accuracy), | |
| "energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
| "emissions_gco2eq": emissions_data.emissions * 1000, | |
| "emissions_data": clean_emissions_data(emissions_data), | |
| "api_route": ROUTE, | |
| "dataset_config": { | |
| "dataset_name": request.dataset_name, | |
| "test_size": request.test_size, | |
| "test_seed": request.test_seed | |
| } | |
| } | |
| return results |