File size: 27,345 Bytes
5330bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
import json
import random
import re
import unicodedata
from typing import Tuple
import gradio as gr
import spacy
import torch
import torch.nn as nn
import torch.nn.functional as F
nlp = spacy.load('en_core_web_sm')
def greet(name):
return "Hello " + name + "!!"
# read word2idx and idx2word from json file
with open('vocab/word2idx.json', 'r') as f:
word2idx = json.load(f)
with open('vocab/idx2word.json', 'r') as f:
idx2word = json.load(f)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def unicodetoascii(text):
"""
Turn a Unicode string to plain ASCII
:param text: text to be converted
:return: text in ascii format
"""
normalized_text = unicodedata.normalize('NFKD', str(text))
ascii_text = ''.join(char for char in normalized_text if unicodedata.category(char) != 'Mn')
return ascii_text
def preprocess_text(text, fn=unicodetoascii):
text = fn(text)
text = text.lower()
text = re.sub(r'http\S+', '', text)
text = re.sub(r'[^\x00-\x7F]+', "", text) # Remove non-ASCII characters
text = re.sub(r"(\w)[!?]+(\w)", r'\1\2', text) # Remove !? between words
text = re.sub(r"\s\s+", r" ", text).strip() # Remove extra spaces
return text
def tokenize(text, nlp=nlp):
"""
Tokenize text
:param text: text to be tokenized
:return: list of tokens
"""
return [tok.text for tok in nlp.tokenizer(text)]
def lookup_words(idx2word, indices):
"""
Lookup words from indices
:param idx2word: index to word mapping
:param indices: indices to be converted
:return: list of words
"""
return [idx2word[str(idx)] for idx in indices]
class Encoder(nn.Module):
"""
GRU RNN Encoder
"""
def __init__(self,
input_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: float = 0):
super(Encoder, self).__init__()
# dimension of imput
self.input_dim = input_dim
# dimension of embedding layer
self.emb_dim = emb_dim
# dimension of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimension of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
# create embedding layer use to train embedding representations of the corpus
self.embedding = nn.Embedding(input_dim, emb_dim)
# use GRU for RNN
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional=True, batch_first=False, num_layers=1)
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
# create dropout layer which will help produce a more generalisable model
self.dropout = nn.Dropout(dropout)
def forward(self, src: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# apply dropout to the embedding layer
embedded = self.dropout(self.embedding(src))
# generate an output and hidden layer from the rnn
outputs, hidden = self.rnn(embedded)
hidden = torch.tanh(self.fc(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)))
return outputs, hidden
class Attention(nn.Module):
"""
Luong attention
"""
def __init__(self,
enc_hid_dim: int,
dec_hid_dim: int,
attn_dim: int):
super(Attention, self).__init__()
# dimension of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimension of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
self.attn = nn.Linear(self.attn_in, attn_dim)
def forward(self,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> torch.Tensor:
src_len = encoder_outputs.shape[0]
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
# Luong attention
energy = torch.tanh(self.attn(torch.cat((repeated_decoder_hidden, encoder_outputs), dim=2)))
attention = torch.sum(energy, dim=2)
return F.softmax(attention, dim=1)
class AttnDecoder(nn.Module):
"""
GRU RNN Decoder with attention
"""
def __init__(self,
output_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
attention: nn.Module,
dropout: float = 0):
super(AttnDecoder, self).__init__()
# dimention of output layer
self.output_dim = output_dim
# dimention of embedding layer
self.emb_dim = emb_dim
# dimention of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimention of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
# drouput rate
self.dropout = dropout
# attention layer
self.attention = attention
# create embedding layer use to train embedding representations of the corpus
self.embedding = nn.Embedding(output_dim, emb_dim)
# use GRU for RNN
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def encode_attention(self,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> torch.Tensor:
a = self.attention(decoder_hidden, encoder_outputs)
a = a.unsqueeze(1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
weighted_encoder_rep = torch.bmm(a, encoder_outputs)
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
return weighted_encoder_rep
def forward(self,
input: torch.Tensor,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
input = input.unsqueeze(0)
# apply dropout to embedding layer
embedded = self.dropout(self.embedding(input))
weighted_encoder = self.encode_attention(decoder_hidden, encoder_outputs)
# generate an output and hidden layer from the rnn
rnn_input = torch.cat((embedded, weighted_encoder), dim=2)
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
embedded = embedded.squeeze(0)
output = output.squeeze(0)
weighted_encoder = weighted_encoder.squeeze(0)
output = self.out(torch.cat((output, weighted_encoder, embedded), dim=1))
return output, decoder_hidden.squeeze(0)
class Decoder(nn.Module):
"""
GRU RNN Decoder without attention
"""
def __init__(self,
output_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: float = 0):
super(Decoder, self).__init__()
# dimention of output layer
self.output_dim = output_dim
# dimention of embedding layer
self.emb_dim = emb_dim
# dimention of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimention of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
# drouput rate
self.dropout = dropout
# create embedding layer use to train embedding representations of the corpus
self.embedding = nn.Embedding(output_dim, emb_dim)
# GRU RNN
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
self.out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self,
input: torch.Tensor,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor
, torch.Tensor]:
input = input.unsqueeze(0)
# apply dropout to embedding layer
embedded = self.dropout(self.embedding(input))
context = encoder_outputs[-1,:,:]
context = context.repeat(embedded.shape[0], 1, 1)
embs_and_context = torch.cat((embedded, context), -1)
# generate an output and hidden layer from the rnn
output, decoder_hidden = self.rnn(embs_and_context, decoder_hidden.unsqueeze(0))
embedded = embedded.squeeze(0)
output = output.squeeze(0)
context = context.squeeze(0)
output = self.out(torch.cat((output, embedded, context), -1))
return output, decoder_hidden.squeeze(0)
class Seq2Seq(nn.Module):
"""
Seq-2-Seq model combining RNN encoder and RNN decoder
"""
def __init__(self,
encoder: nn.Module,
decoder: nn.Module,
device: torch.device):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
def forward(self,
src: torch.Tensor,
trg: torch.Tensor,
teacher_forcing_ratio: float = 0.5) -> torch.Tensor:
src = src.transpose(0, 1) # (max_len, batch_size)
trg = trg.transpose(0, 1) # (max_len, batch_size)
batch_size = src.shape[1]
max_len = trg.shape[0]
trg_vocab_size = self.decoder.output_dim
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
# first input to the decoder is the <sos> token
output = trg[0,:]
for t in range(1, max_len):
output, hidden = self.decoder(output, hidden, encoder_outputs)
outputs[t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.max(1)[1]
output = trg[t] if teacher_force else top1
return outputs
params = {'input_dim': len(word2idx),
'emb_dim': 128,
'enc_hid_dim': 256,
'dec_hid_dim': 256,
'dropout': 0.5,
'attn_dim': 32,
'teacher_forcing_ratio': 0.5,
'epochs': 35}
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
attn = Attention(enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attn_dim=params['attn_dim'])
dec = AttnDecoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attention=attn, dropout=params['dropout'])
attn_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
attn_model.load_state_dict(torch.load('AttnSeq2Seq-188M_epoch35.pt', map_location=torch.device('cpu')))
attn_model.to(device)
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
dec = Decoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
norm_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
norm_model.load_state_dict(torch.load('NormSeq2Seq-188M_epoch35.pt', map_location=torch.device('cpu')))
norm_model.to(device)
with open('vocab219/word2idx.json', 'r') as f:
word2idx2 = json.load(f)
with open('vocab219/idx2word.json', 'r') as f:
idx2word2 = json.load(f)
params219 = {'input_dim': len(word2idx2),
'emb_dim': 192,
'enc_hid_dim': 256,
'dec_hid_dim': 256,
'dropout': 0.5,
'attn_dim': 64,
'teacher_forcing_ratio': 0.5,
'epochs': 35}
enc = Encoder(input_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
enc_hid_dim=params219['enc_hid_dim'], dec_hid_dim=params219['dec_hid_dim'],
dropout=params219['dropout'])
attn = Attention(enc_hid_dim=params219['enc_hid_dim'], dec_hid_dim=params219['dec_hid_dim'],
attn_dim=params219['attn_dim'])
dec = AttnDecoder(output_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
enc_hid_dim=params219['enc_hid_dim'], dec_hid_dim=params219['dec_hid_dim'],
attention=attn, dropout=params219['dropout'])
attn_model219 = Seq2Seq(encoder=enc, decoder=dec, device=device)
attn_model219.load_state_dict(torch.load('AttnSeq2Seq-219M_epoch35.pt',
map_location=torch.device('cpu')))
attn_model219.to(device)
enc = Encoder(input_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
enc_hid_dim=params219['enc_hid_dim'],
dec_hid_dim=params219['dec_hid_dim'], dropout=params219['dropout'])
dec = Decoder(output_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
enc_hid_dim=params219['enc_hid_dim'],
dec_hid_dim=params219['dec_hid_dim'],
dropout=params219['dropout'])
norm_model219 = Seq2Seq(encoder=enc, decoder=dec, device=device)
norm_model219.load_state_dict(torch.load('NormSeq2Seq-219M_epoch35.pt',
map_location=torch.device('cpu')))
norm_model219.to(device)
with open('vocab219SW/word2idx.json', 'r') as f:
word2idx3 = json.load(f)
with open('vocab219SW/idx2word.json', 'r') as f:
idx2word3 = json.load(f)
params219SW = {'input_dim': len(word2idx3),
'emb_dim': 192,
'enc_hid_dim': 256,
'dec_hid_dim': 256,
'dropout': 0.5,
'attn_dim': 64,
'teacher_forcing_ratio': 0.5,
'epochs': 35}
enc = Encoder(input_dim=params219SW['input_dim'], emb_dim=params219SW['emb_dim'],
enc_hid_dim=params219SW['enc_hid_dim'], dec_hid_dim=params219SW['dec_hid_dim'],
dropout=params219SW['dropout'])
attn = Attention(enc_hid_dim=params219SW['enc_hid_dim'], dec_hid_dim=params219SW['dec_hid_dim'],
attn_dim=params219SW['attn_dim'])
dec = AttnDecoder(output_dim=params219SW['input_dim'], emb_dim=params219['emb_dim'],
enc_hid_dim=params219SW['enc_hid_dim'], dec_hid_dim=params219SW['dec_hid_dim'],
attention=attn, dropout=params219SW['dropout'])
attn_model219SW = Seq2Seq(encoder=enc, decoder=dec, device=device)
attn_model219SW.load_state_dict(torch.load('AttnSeq2Seq-219M-SW_epoch35.pt',
map_location=torch.device('cpu')))
attn_model219SW.to(device)
enc = Encoder(input_dim=params219SW['input_dim'], emb_dim=params219SW['emb_dim'],
enc_hid_dim=params219SW['enc_hid_dim'],
dec_hid_dim=params219SW['dec_hid_dim'], dropout=params219SW['dropout'])
dec = Decoder(output_dim=params219SW['input_dim'], emb_dim=params219SW['emb_dim'],
enc_hid_dim=params219SW['enc_hid_dim'],
dec_hid_dim=params219SW['dec_hid_dim'],
dropout=params219SW['dropout'])
norm_model219SW = Seq2Seq(encoder=enc, decoder=dec, device=device)
norm_model219SW.load_state_dict(torch.load('NormSeq2Seq-219M-SW_epoch35.pt',
map_location=torch.device('cpu')))
norm_model219SW.to(device)
nlp = spacy.load('en_core_web_sm')
models_dict = {'AttentionSeq2Seq-188M': attn_model, 'NormalSeq2Seq-188M': norm_model,
'AttentionSeq2Seq-219M': attn_model219,
'NormalSeq2Seq-219M': norm_model219,
'AttentionSeq2Seq-219M-SW': attn_model219SW,
'NormalSeq2Seq-219M-SW': norm_model219SW}
def generateAttn188(sentence, history, max_len=12,
word2idx=word2idx, idx2word=idx2word,
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
history = history
model = models_dict['AttentionSeq2Seq-188M']
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
def generateNorm188(sentence, history, max_len=12,
word2idx=word2idx, idx2word=idx2word,
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
history = history
model = models_dict['NormalSeq2Seq-188M']
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
def generateAttn219(sentence, history, max_len=12,
word2idx=word2idx2, idx2word=idx2word2,
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
history = history
model = models_dict['AttentionSeq2Seq-219M']
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
def generateNorm219(sentence, history, max_len=12,
word2idx=word2idx2, idx2word=idx2word2,
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
history = history
model = models_dict['NormalSeq2Seq-219M']
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
def tokenize_context(text, nlp=nlp):
"""
Tokenize text and remove stop words
:param text: text to be tokenized
:return: list of tokens
"""
return [tok.text for tok in nlp.tokenizer(text) if not tok.is_stop]
def generateAttn219SW(sentence, history, max_len=12,
word2idx=word2idx3, idx2word=idx2word3,
device=device, tokenize_context=tokenize_context,
preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
history = history
model = models_dict['AttentionSeq2Seq-219M']
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize_context(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
def generateNorm219SW(sentence, history, max_len=12,
word2idx=word2idx3, idx2word=idx2word3,
device=device, tokenize_context=tokenize_context, preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
history = history
model = models_dict['NormalSeq2Seq-219M']
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize_context(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
norm188 = gr.ChatInterface(generateNorm188,
title="NormalSeq2Seq-188M",
description="""Seq2Seq Generative Chatbot without Attention.
188,204,500 trainable parameters""")
norm219 = gr.ChatInterface(generateNorm219,
title="NormalSeq2Seq-219M",
description="""Seq2Seq Generative Chatbot without Attention.
219,456,724 trainable parameters""")
norm219sw = gr.ChatInterface(generateNorm219SW,
title="NormalSeq2Seq-219M-SW",
description="""Seq2Seq Generative Chatbot without Attention.
219,451,344 trainable parameters
Trained with stop words removed for context (input) and more data.""")
attn188 = gr.ChatInterface(generateAttn188,
title="AttentionSeq2Seq-188M",
description="""Seq2Seq Generative Chatbot with Attention.
188,229,108 trainable parameters""")
attn219 = gr.ChatInterface(generateAttn219,
title="AttentionSeq2Seq-219M",
description="""Seq2Seq Generative Chatbot with Attention.
219,505,940 trainable parameters
""")
attn219sw = gr.ChatInterface(generateAttn219SW,
title="AttentionSeq2Seq-219M-SW",
description="""Seq2Seq Generative Chatbot with Attention.
219,500,560 trainable parameters
Trained with stop words removed for context (input) and more data""")
with gr.Blocks() as demo:
gr.Markdown(""" > This chatbot is created as part of the Group Project Practical Assessment for University of Liverpool's CSCK507 Natural Language Processing and Understanding (June 2023)
> Disclaimer: Please be advised that this chatbot is an AI language model designed to generate responses based on patterns in data it has been trained on (Ubuntu Dialogue Dataset).
While efforts have been made to ensure that the responses generated are appropriate and respectful, there is a possibility that the chatbot may occasionally produce content that could be offensive, vulgar, or inappropriate.""")
gr.TabbedInterface([norm188, norm219, norm219sw], ["188M", "219M", "219M-SW"])
gr.TabbedInterface([attn188, attn219, attn219sw], ["188M", "219M", "219M-SW"])
if __name__ == "__main__":
demo.launch() |