dand199 commited on
Commit
8d02c7b
·
verified ·
1 Parent(s): 2ea04f6

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -25
app.py CHANGED
@@ -187,31 +187,8 @@ def article_sentiment(arti):
187
 
188
  st.markdown(md_intro)
189
  tab_news, tab_pred = st.tabs(["News Report", "Sentiment Prediction"])
190
- with tab_news:
191
- st.markdown(md_sumstats)
192
- method_col, range_col = st.columns(2)
193
- with method_col:
194
- method_selection = st.selectbox("Select Method", ('Lexicon', 'Transformer'))
195
- with range_col:
196
- range_selection = st.selectbox("Statistics Range", ('1 day', '3 days'))
197
- overall_sentiment, news_count = news_stats(news, method_selection, range_selection)
198
- senti_col, count_col = st.columns(2)
199
- senti_col.metric("Overall Sentiment", str(round(overall_sentiment, 3)))
200
- count_col.metric("Number of News", str(news_count))
201
- st.markdown(md_table)
202
- date_selection = st.selectbox("Extraction Date", ('Yesterday', '2 Days Ago', '3 Days Ago'))
203
- clean_news = news_table(news, date_selection, method_selection)
204
- st.dataframe(data=clean_news,
205
- column_config={"Title": st.column_config.Column(width=250),
206
- "Most Positive Sentence": st.column_config.Column(width=400),
207
- "Least Positive Sentence": st.column_config.Column(width=400),
208
- "Date": st.column_config.DateColumn(format="DD-MM-YYYY"),
209
- "URL": st.column_config.LinkColumn("App URL", width=400)
210
- })
211
- st.markdown(md_notes)
212
-
213
  with tab_pred:
214
- st.write("This is a sentiment prediction module.\nPlease enter your news link into the textbox.\nSentiment prediction will be returned shortly!.\nExample link: https://www.bbc.com/news/business-68610711")
215
  newslink = st.chat_input(placeholder="Please input CNN/BBC/CNBC link")
216
  if newslink:
217
  placeholder = st.empty()
@@ -245,4 +222,28 @@ with tab_pred:
245
 
246
 
247
  ''')
248
- st.markdown(f"{user_neg_sents[2]}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
 
188
  st.markdown(md_intro)
189
  tab_news, tab_pred = st.tabs(["News Report", "Sentiment Prediction"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
  with tab_pred:
191
+ st.write("This is a sentiment prediction module.\nPlease enter your news link into the textbox.\nSentiment prediction will be returned shortly!.\nExample link: https://www.bbc.com/news/technology-68818113")
192
  newslink = st.chat_input(placeholder="Please input CNN/BBC/CNBC link")
193
  if newslink:
194
  placeholder = st.empty()
 
222
 
223
 
224
  ''')
225
+ st.markdown(f"{user_neg_sents[2]}")
226
+
227
+
228
+ with tab_news:
229
+ st.markdown(md_sumstats)
230
+ method_col, range_col = st.columns(2)
231
+ with method_col:
232
+ method_selection = st.selectbox("Select Method", ('Lexicon', 'Transformer'))
233
+ with range_col:
234
+ range_selection = st.selectbox("Statistics Range", ('1 day', '3 days'))
235
+ overall_sentiment, news_count = news_stats(news, method_selection, range_selection)
236
+ senti_col, count_col = st.columns(2)
237
+ senti_col.metric("Overall Sentiment", str(round(overall_sentiment, 3)))
238
+ count_col.metric("Number of News", str(news_count))
239
+ st.markdown(md_table)
240
+ date_selection = st.selectbox("Extraction Date", ('Yesterday', '2 Days Ago', '3 Days Ago'))
241
+ clean_news = news_table(news, date_selection, method_selection)
242
+ st.dataframe(data=clean_news,
243
+ column_config={"Title": st.column_config.Column(width=250),
244
+ "Most Positive Sentence": st.column_config.Column(width=400),
245
+ "Least Positive Sentence": st.column_config.Column(width=400),
246
+ "Date": st.column_config.DateColumn(format="DD-MM-YYYY"),
247
+ "URL": st.column_config.LinkColumn("App URL", width=400)
248
+ })
249
+ st.markdown(md_notes)