Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import cv2 | |
import kiui | |
import trimesh | |
import torch | |
import rembg | |
from datetime import datetime | |
import subprocess | |
import argparse | |
try: | |
# running on Hugging Face Spaces | |
import spaces | |
except ImportError: | |
# running locally, use a dummy space | |
class spaces: | |
class GPU: | |
def __init__(self, duration=60): | |
self.duration = duration | |
def __call__(self, func): | |
return func | |
from flow.model import Model | |
from flow.configs.schema import ModelConfig | |
from flow.utils import get_random_color, recenter_foreground | |
from vae.utils import postprocess_mesh | |
# download checkpoints | |
from huggingface_hub import hf_hub_download | |
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt") | |
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt") | |
TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32) | |
MAX_SEED = np.iinfo(np.int32).max | |
bg_remover = rembg.new_session() | |
# model config | |
model_config = ModelConfig( | |
vae_conf="vae.configs.part_woenc", | |
vae_ckpt_path=vae_ckpt_path, | |
qknorm=True, | |
qknorm_type="RMSNorm", | |
use_pos_embed=False, | |
dino_model="dinov2_vitg14", | |
hidden_dim=1536, | |
flow_shift=3.0, | |
logitnorm_mean=1.0, | |
logitnorm_std=1.0, | |
latent_size=4096, | |
use_parts=True, | |
) | |
# instantiate model | |
model = Model(model_config).eval().cuda().bfloat16() | |
# load weight | |
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True) | |
model.load_state_dict(ckpt_dict, strict=True) | |
# get random seed | |
def get_random_seed(randomize_seed, seed): | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
return seed | |
# process image | |
def process_image(image_path): | |
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) | |
if image.shape[-1] == 4: | |
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) | |
else: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# bg removal if there is no alpha channel | |
image = rembg.remove(image, session=bg_remover) # [H, W, 4] | |
mask = image[..., -1] > 0 | |
image = recenter_foreground(image, mask, border_ratio=0.1) | |
image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA) | |
return image | |
# process generation | |
def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000): | |
# seed | |
kiui.seed_everything(seed) | |
# output path | |
os.makedirs("output", exist_ok=True) | |
output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb" | |
# input image (assume processed to RGBA uint8) | |
image = input_image.astype(np.float32) / 255.0 | |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background | |
image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda() | |
data = {"cond_images": image_tensor} | |
with torch.inference_mode(): | |
results = model(data, num_steps=num_steps, cfg_scale=cfg_scale) | |
latent = results["latent"] | |
# query mesh | |
data_part0 = {"latent": latent[:, : model.config.latent_size, :]} | |
data_part1 = {"latent": latent[:, model.config.latent_size :, :]} | |
with torch.inference_mode(): | |
results_part0 = model.vae(data_part0, resolution=grid_res) | |
results_part1 = model.vae(data_part1, resolution=grid_res) | |
if not simplify_mesh: | |
target_num_faces = -1 | |
vertices, faces = results_part0["meshes"][0] | |
mesh_part0 = trimesh.Trimesh(vertices, faces) | |
mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T | |
mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces) | |
parts = mesh_part0.split(only_watertight=False) | |
vertices, faces = results_part1["meshes"][0] | |
mesh_part1 = trimesh.Trimesh(vertices, faces) | |
mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T | |
mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces) | |
parts.extend(mesh_part1.split(only_watertight=False)) | |
# split connected components and assign different colors | |
for j, part in enumerate(parts): | |
# each component uses a random color | |
part.visual.vertex_colors = get_random_color(j, use_float=True) | |
mesh = trimesh.Scene(parts) | |
# export the whole mesh | |
mesh.export(output_glb_path) | |
print(f"Saved 3D model to {output_glb_path}") | |
return output_glb_path | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--image_path', type=str, default='examples/robot.png', help='Path to input image') | |
parser.add_argument('--num_steps', type=int, default=50, help='Inference steps') | |
parser.add_argument('--cfg_scale', type=float, default=7.0, help='CFG scale') | |
parser.add_argument('--grid_res', type=int, default=384, help='Grid resolution') | |
parser.add_argument('--seed', type=int, default=42, help='Random seed') | |
parser.add_argument('--randomize_seed', action='store_true', help='Randomize seed') | |
parser.add_argument('--simplify_mesh', action='store_true', help='Simplify mesh') | |
parser.add_argument('--target_num_faces', type=int, default=100000, help='Target number of faces for mesh simplification') | |
args = parser.parse_args() | |
if args.randomize_seed: | |
args.seed = get_random_seed(args.randomize_seed, args.seed) | |
processed_image = process_image(args.image_path) | |
process_3d( | |
input_image=processed_image, | |
num_steps=args.num_steps, | |
cfg_scale=args.cfg_scale, | |
grid_res=args.grid_res, | |
seed=args.seed, | |
simplify_mesh=args.simplify_mesh, | |
target_num_faces=args.target_num_faces | |
) |