File size: 6,205 Bytes
ad35335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import subprocess
import gradio as gr
import random
from gradio_app.inference import run_inference
from gradio_app.examples import load_examples, select_example
from gradio_app.project_info import (
NAME,
CONTENT_DESCRIPTION,
CONTENT_IN_1,
CONTENT_OUT_1
)
def run_setup_script():
setup_script = os.path.join(os.path.dirname(__file__), "gradio_app", "setup_scripts.py")
try:
result = subprocess.run(["python", setup_script], capture_output=True, text=True, check=True)
return result.stdout
except subprocess.CalledProcessError as e:
print(f"Setup script failed with error: {e.stderr}")
return f"Setup script failed: {e.stderr}"
def stop_app():
"""Function to stop the Gradio app."""
try:
gr.Interface.close_all() # Attempt to close all running Gradio interfaces
return "Application stopped successfully."
except Exception as e:
return f"Error stopping application: {str(e)}"
def create_gui():
try:
custom_css = open("apps/gradio_app/static/style.css").read()
except FileNotFoundError:
print("Error: style.css not found at gradio_app/static/style.css")
custom_css = "" # Fallback to empty CSS if file is missing
with gr.Blocks(css=custom_css) as demo:
gr.Markdown(NAME)
gr.HTML(CONTENT_DESCRIPTION)
gr.HTML(CONTENT_IN_1)
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(type="filepath", label="Input Image")
prompt = gr.Textbox(
label="Prompt",
value="a man is doing yoga"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="monochrome, lowres, bad anatomy, worst quality, low quality"
)
with gr.Row():
width = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Width"
)
height = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Height"
)
with gr.Accordion("Advanced Settings", open=False):
num_steps = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of Inference Steps"
)
use_random_seed = gr.Checkbox(label="Use Random Seed", value=False)
seed = gr.Slider(
minimum=0,
maximum=2**32 - 1,
value=42,
step=1,
label="Random Seed",
visible=True
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.1,
label="Guidance Scale"
)
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="ControlNet Conditioning Scale"
)
with gr.Column(scale=3):
output_images = gr.Image(label="Generated Images")
output_message = gr.Textbox(label="Status")
submit_button = gr.Button("Generate Images", elem_classes="submit-btn")
stop_button = gr.Button("Stop Application", elem_classes="stop-btn")
def update_seed_visibility(use_random):
return gr.update(visible=not use_random)
use_random_seed.change(
fn=update_seed_visibility,
inputs=use_random_seed,
outputs=seed
)
# Load examples
examples_data = load_examples(os.path.join("apps", "gradio_app",
"assets", "examples", "Stable-Diffusion-2.1-Openpose-ControlNet"))
examples_component = gr.Examples(
examples=examples_data,
inputs=[
input_image,
prompt,
negative_prompt,
output_images,
num_steps,
seed,
width,
height,
guidance_scale,
controlnet_conditioning_scale,
use_random_seed
],
outputs=[
input_image,
prompt,
negative_prompt,
output_images,
num_steps,
seed,
width,
height,
guidance_scale,
controlnet_conditioning_scale,
use_random_seed,
output_message
],
fn=select_example,
cache_examples=False,
label="Examples: Yoga Poses"
)
submit_button.click(
fn=run_inference,
inputs=[
input_image,
prompt,
negative_prompt,
num_steps,
seed,
width,
height,
guidance_scale,
controlnet_conditioning_scale,
use_random_seed,
],
outputs=[output_images, output_message]
)
stop_button.click(
fn=stop_app,
inputs=[],
outputs=[output_message]
)
gr.HTML(CONTENT_OUT_1)
return demo
if __name__ == "__main__":
run_setup_script()
demo = create_gui()
demo.launch() |