|
import torch
|
|
import argparse
|
|
import os
|
|
import sys
|
|
|
|
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
|
|
|
from inference.config_loader import load_config, find_config_by_model_id
|
|
from inference.model_initializer import (
|
|
initialize_controlnet,
|
|
initialize_pipeline,
|
|
initialize_controlnet_detector
|
|
)
|
|
from inference.device_manager import setup_device
|
|
from inference.image_processor import load_input_image, detect_poses
|
|
from inference.image_generator import generate_images, save_images
|
|
|
|
|
|
global controlnet_detector, controlnet, pipe
|
|
controlnet_detector = None
|
|
controlnet = None
|
|
pipe = None
|
|
|
|
def infer(
|
|
config_path,
|
|
input_image,
|
|
image_url,
|
|
prompt,
|
|
negative_prompt,
|
|
num_steps,
|
|
seed,
|
|
width,
|
|
height,
|
|
guidance_scale,
|
|
controlnet_conditioning_scale,
|
|
output_dir=None,
|
|
use_prompt_as_output_name=None,
|
|
save_output=False
|
|
):
|
|
global controlnet_detector, controlnet, pipe
|
|
|
|
|
|
configs = load_config(config_path)
|
|
|
|
|
|
if controlnet_detector is None or controlnet is None or pipe is None:
|
|
controlnet_detector_config = find_config_by_model_id(configs, "lllyasviel/ControlNet")
|
|
controlnet_config = find_config_by_model_id(configs,
|
|
"danhtran2mind/Stable-Diffusion-2.1-Openpose-ControlNet")
|
|
pipeline_config = find_config_by_model_id(configs,
|
|
"stabilityai/stable-diffusion-2-1")
|
|
|
|
controlnet_detector = initialize_controlnet_detector(controlnet_detector_config)
|
|
controlnet = initialize_controlnet(controlnet_config)
|
|
pipe = initialize_pipeline(controlnet, pipeline_config)
|
|
|
|
|
|
device = setup_device(pipe)
|
|
|
|
|
|
demo_image = load_input_image(input_image, image_url)
|
|
poses = detect_poses(controlnet_detector, demo_image)
|
|
|
|
|
|
generators = [torch.Generator(device="cpu").manual_seed(seed + i) for i in range(len(poses))]
|
|
output_images = generate_images(
|
|
pipe,
|
|
[prompt] * len(generators),
|
|
poses,
|
|
generators,
|
|
[negative_prompt] * len(generators),
|
|
num_steps,
|
|
guidance_scale,
|
|
controlnet_conditioning_scale,
|
|
width,
|
|
height
|
|
)
|
|
|
|
|
|
if save_output:
|
|
save_images(output_images, output_dir, prompt, use_prompt_as_output_name)
|
|
|
|
return output_images
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="ControlNet image generation with pose detection")
|
|
image_group = parser.add_mutually_exclusive_group(required=True)
|
|
image_group.add_argument("--input_image", type=str, default=None,
|
|
help="Path to local input image (default: tests/test_data/yoga1.jpg)")
|
|
image_group.add_argument("--image_url", type=str, default=None,
|
|
help="URL of input image (e.g., https://huggingface.co/datasets/YiYiXu/controlnet-testing/resolve/main/yoga1.jpeg)")
|
|
|
|
parser.add_argument("--config_path", type=str, default="configs/model_ckpts.yaml",
|
|
help="Path to configuration YAML file")
|
|
parser.add_argument("--prompt", type=str, default="a man is doing yoga",
|
|
help="Text prompt for image generation")
|
|
parser.add_argument("--negative_prompt", type=str,
|
|
default="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
help="Negative prompt for image generation")
|
|
parser.add_argument("--num_steps", type=int, default=20,
|
|
help="Number of inference steps")
|
|
parser.add_argument("--seed", type=int, default=2,
|
|
help="Random seed for generation")
|
|
parser.add_argument("--width", type=int, default=512,
|
|
help="Width of the generated image")
|
|
parser.add_argument("--height", type=int, default=512,
|
|
help="Height of the generated image")
|
|
parser.add_argument("--guidance_scale", type=float, default=7.5,
|
|
help="Guidance scale for prompt adherence")
|
|
parser.add_argument("--controlnet_conditioning_scale", type=float, default=1.0,
|
|
help="ControlNet conditioning scale")
|
|
parser.add_argument("--output_dir", type=str, default="tests/test_data",
|
|
help="Directory to save generated images")
|
|
parser.add_argument("--use_prompt_as_output_name", action="store_true",
|
|
help="Use prompt as part of output image filename")
|
|
parser.add_argument("--save_output", action="store_true",
|
|
help="Save generated images to output directory")
|
|
|
|
args = parser.parse_args()
|
|
infer(
|
|
config_path=args.config_path,
|
|
input_image=args.input_image,
|
|
image_url=args.image_url,
|
|
prompt=args.prompt,
|
|
negative_prompt=args.negative_prompt,
|
|
num_steps=args.num_steps,
|
|
seed=args.seed,
|
|
width=args.width,
|
|
height=args.height,
|
|
guidance_scale=args.guidance_scale,
|
|
controlnet_conditioning_scale=args.controlnet_conditioning_scale,
|
|
output_dir=args.output_dir,
|
|
use_prompt_as_output_name=args.use_prompt_as_output_name,
|
|
save_output=args.save_output
|
|
) |