File size: 7,126 Bytes
b7f710c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from ultralytics import YOLO
import cv2
import os
from PIL import Image
import numpy as np
import glob
import sys
import argparse
import torch

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))

from utils import download_yolo_face_detection

def initialize_yolo_model(yolo_model_path):
    """Initialize YOLO model with specified device."""
    # if device.startswith('cuda') and not torch.cuda.is_available():
    #     print("Warning: CUDA not available, falling back to CPU.")
    #     device = 'cpu'
    if not os.path.exists(yolo_model_path):
        download_yolo_face_detection.download_yolo_face_detection_model()
    return YOLO(yolo_model_path)

def process_image_results(image, image_rgb, boxes):
    """Process bounding boxes and crop faces for a single image."""
    bounding_boxes, cropped_faces = [], []
    for box in boxes:
        x1, y1, x2, y2 = map(int, box)
        if x2 > x1 and y2 > y1 and x1 >= 0 and y1 >= 0 and x2 <= image.shape[1] and y2 <= image.shape[0]:
            bounding_boxes.append([x1, y1, x2, y2])
            cropped_face = image_rgb[y1:y2, x1:x2]
            if cropped_face.size > 0:
                pil_image = Image.fromarray(cropped_face).resize((112, 112), Image.Resampling.BILINEAR)
                cropped_faces.append(pil_image)
    return np.array(bounding_boxes, dtype=np.int32) if bounding_boxes else np.empty((0, 4), dtype=np.int32), cropped_faces

def process_batch(model, image_paths, all_bounding_boxes, all_cropped_faces, device):
    """Process images in batch mode using list comprehensions for efficiency."""
    # Validate and load images, filter out invalid ones
    valid_data = [(cv2.imread(path), path) for path in image_paths if os.path.exists(path)]
    valid_images, valid_image_paths = zip(*[(img, path) for img, path in valid_data if img is not None]) if valid_data else ([], [])

    # Append empty results for invalid images
    for path in image_paths:
        if not os.path.exists(path) or cv2.imread(path) is None:
            all_bounding_boxes.append(np.empty((0, 4), dtype=np.int32))
            all_cropped_faces.append([])
            print(f"Warning: {'not found' if not os.path.exists(path) else 'failed to load'} {path}. Skipping.")

    # Process valid images
    if valid_images:
        images_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in valid_images]
        results = model.predict(source=valid_image_paths, conf=0.25, iou=0.45, verbose=False, device=device)

        # Process results with comprehension
        for img, rgb, result in zip(valid_images, images_rgb, results):
            bboxes, faces = process_image_results(img, rgb, result.boxes.xyxy.cpu().numpy())
            all_bounding_boxes.append(bboxes)
            all_cropped_faces.append(faces[0] if faces else [])

def process_individual(model, image_paths, all_bounding_boxes, all_cropped_faces, device):
    """Process images individually."""
    for image_path in image_paths:
        if not os.path.exists(image_path):
            print(f"Warning: {image_path} not found. Skipping.")
            all_bounding_boxes.append(np.empty((0, 4), dtype=np.int32))
            all_cropped_faces.append([])
            continue
        
        image = cv2.imread(image_path)
        if image is None:
            print(f"Warning: Failed to load {image_path}. Skipping.")
            all_bounding_boxes.append(np.empty((0, 4), dtype=np.int32))
            all_cropped_faces.append([])
            continue
        
        image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        results = model(image_path, conf=0.25, iou=0.45, verbose=False, device=device)
        
        for result in results:
            boxes = result.boxes.xyxy.cpu().numpy()
            bboxes, faces = process_image_results(image, image_rgb, boxes)
            all_bounding_boxes.append(bboxes)
            all_cropped_faces.append(faces[0] if faces else [])

def face_yolo_detection(image_paths,

                        yolo_model_path="./ckpts/yolo_face_detection/model.pt",

                        use_batch=True, device='cuda'):
    """Perform face detection using YOLOv11 with batch or individual processing on specified device."""
    model = initialize_yolo_model(yolo_model_path)
    all_bounding_boxes, all_cropped_faces = [], []
    
    if use_batch:
        process_batch(model, image_paths, all_bounding_boxes, all_cropped_faces, device)
    else:
        process_individual(model, image_paths, all_bounding_boxes, all_cropped_faces, device)
    
    return zip(all_bounding_boxes, all_cropped_faces)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="YOLOv11 face detection")
    parser.add_argument("--use-batch", action="store_true", default=True, help="Use batch processing (default: True)")
    parser.add_argument("--image-dir", type=str, default="test/test_images", help="Input image directory")
    parser.add_argument("--yolo-model-path", type=str, default="checkpoints/yolo11_face_detection/model.pt", help="YOLO model path")
    parser.add_argument("--device", type=str, default="cuda", help="Device to run the model (e.g., 'cuda', 'cpu', 'cuda:0')")
    
    args = parser.parse_args()
    
    image_paths = (glob.glob(os.path.join(args.image_dir, "*.[jJ][pP][gG]")) + 
                   glob.glob(os.path.join(args.image_dir, "*.[pP][nN][gG]")))
    
    if args.yolo_model_path:
        yolo_model_path = args.yolo_model_path
    else:
        yolo_model_path = os.path.join("checkpoints", "yolo11_face_detection", "model.pt")

    import time
    t1 = time.time()
    results = face_yolo_detection(image_paths, yolo_model_path, args.use_batch, args.device)
    print("Time taken:", time.time() - t1)

    # Optional: Save or process results
    # for i, (bboxes, faces) in enumerate(results):
    #     print(f"Image {i}: Bounding Boxes: {bboxes}")
    #     for j, face in enumerate(faces):
    #         face.save(f"face_{i}_{j}.png")

    # Benchmarking (uncomment to use)
    # import time
    # num_runs = 50
    # batch_times, individual_times = [], []
    
    # # Benchmark batch processing
    # for _ in range(num_runs):
    #     t1 = time.time()
    #     face_yolo_detection(image_paths, yolo_model_path, use_batch=True, device=args.device)
    #     batch_times.append(time.time() - t1)
    
    # # Benchmark individual processing
    # for _ in range(num_runs):
    #     t1 = time.time()
    #     face_yolo_detection(image_paths, yolo_model_path, use_batch=False, device=args.device)
    #     individual_times.append(time.time() - t1)
    
    # # Calculate and print average times
    # avg_batch_time = sum(batch_times) / num_runs
    # avg_individual_time = sum(individual_times) / num_runs
    
    # print(f"\nBenchmark Results (over {num_runs} runs):")
    # print(f"Average Batch Processing Time: {avg_batch_time:.4f} seconds")
    # print(f"Average Individual Processing Time: {avg_individual_time:.4f} seconds")