SlimFace-demo / src /slimface /data /data_processing.py
danhtran2mind's picture
Upload 164 files
b7f710c verified
from PIL import Image
import numpy as np
import os
import imgaug.augmenters as iaa
import random
import uuid
RANDOM_RATIO = 0.5 # 0.5
# TARGET_SIZE = (224, 224) # Standard size for face recognition models
def process_image(src_path, dest_dir, aug=None):
"""
Process an image by resizing, normalizing, and optionally augmenting it.
Saves both raw and augmented versions of the image.
Args:
src_path (str): Path to the source image
dest_dir (str): Destination directory for the raw and augmented images
aug (iaa.Sequential, optional): Augmentation pipeline
Returns:
list: List of saved image filenames (raw and optionally augmented)
"""
saved_images = []
try:
# Open and process image
img = Image.open(src_path).convert('RGB')
# Resize image
# img = img.resize(TARGET_SIZE, Image.Resampling.LANCZOS)
# Convert to numpy array and normalize
img_array = np.array(img) / 255.0
# Save raw processed image
raw_filename = os.path.basename(src_path)
base, ext = os.path.splitext(raw_filename)
raw_dest_path = os.path.join(dest_dir, raw_filename)
counter = 1
while os.path.exists(raw_dest_path):
raw_filename = f"{base}_{counter}{ext}"
raw_dest_path = os.path.join(dest_dir, raw_filename)
counter += 1
raw_img = Image.fromarray((img_array * 255).astype(np.uint8))
raw_img.save(raw_dest_path, quality=100)
saved_images.append(raw_filename)
# Apply augmentation if specified and save augmented image
if aug and random.random() <= RANDOM_RATIO:
img_array_aug = aug.augment_image(img_array)
# Clip values to ensure valid range after augmentation
img_array_aug = np.clip(img_array_aug, 0, 1)
# Convert back to image
aug_img = Image.fromarray((img_array_aug * 255).astype(np.uint8))
# Save augmented image with unique suffix
aug_filename = f"aug_{base}_{uuid.uuid4().hex[:8]}{ext}"
aug_dest_path = os.path.join(dest_dir, aug_filename)
aug_img.save(aug_dest_path, quality=100)
saved_images.append(aug_filename)
except Image.UnidentifiedImageError:
print(f"Error: Cannot identify image file {src_path}")
except OSError as e:
print(f"Error processing image {src_path}: {e}")
except Exception as e:
print(f"Unexpected error processing image {src_path}: {e}")
return saved_images