Spaces:
Running
Running
import os | |
import sys | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import argparse | |
import warnings | |
import json | |
# Append necessary paths | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "third_party"))) | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
from edgeface.face_alignment import align as edgeface_align | |
from edgeface.backbones import get_model | |
from models.detection_models import align as align_classifier | |
def preprocess_image(image_path, algorithm='yolo', resolution=224): | |
try: | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore", category=FutureWarning, message=".*rcond.*") | |
aligned_result = align_classifier.get_aligned_face([image_path], algorithm=algorithm) | |
aligned_image = aligned_result[0][1] if aligned_result and len(aligned_result) > 0 else Image.open(image_path).convert('RGB') | |
aligned_image = aligned_image.resize((resolution, resolution), Image.Resampling.LANCZOS) | |
except Exception as e: | |
print(f"Error processing {image_path}: {e}") | |
aligned_image = Image.open(image_path).convert('RGB').resize((resolution, resolution), Image.Resampling.LANCZOS) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
return transform(aligned_image).unsqueeze(0) | |
def load_model(model_path): | |
try: | |
model = torch.jit.load(model_path, map_location=torch.device('cpu')) | |
model.eval() | |
return model | |
except Exception as e: | |
raise RuntimeError(f"Failed to load model from {model_path}: {e}") | |
def load_class_mapping(index_to_class_mapping_path): | |
try: | |
with open(index_to_class_mapping_path, 'r') as f: | |
idx_to_class = json.load(f) | |
return {int(k): v for k, v in idx_to_class.items()} | |
except Exception as e: | |
raise ValueError(f"Error loading class mapping: {e}") | |
def get_edgeface_embeddings(image_path, model_path): | |
"""Get EdgeFace embeddings for a given image.""" | |
model_name = os.path.basename(model_path).split('.')[0] | |
model = get_model(model_name) | |
model.load_state_dict(torch.load(model_path, map_location='cpu')) | |
model.eval() | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
]) | |
aligned_result = edgeface_align.get_aligned_face(image_path, algorithm='yolo') | |
if not aligned_result: | |
raise ValueError(f"Face alignment failed for {image_path}") | |
with torch.no_grad(): | |
return model(transform(aligned_result[0][1]).unsqueeze(0)) | |
# def inference_and_confirm(args): | |
# idx_to_class = load_class_mapping(args.index_to_class_mapping_path) | |
# classifier_model = load_model(args.model_path) | |
# device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu') | |
# classifier_model = classifier_model.to(device) | |
# # Load reference images mapping from JSON file | |
# try: | |
# with open(args.reference_dict_path, 'r') as f: | |
# reference_images = json.load(f) | |
# except Exception as e: | |
# raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}") | |
# # Handle single image or directory | |
# image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [ | |
# os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path) | |
# if img.endswith(('.jpg', '.jpeg', '.png')) | |
# ] | |
# results = [] | |
# with torch.no_grad(): | |
# for image_path in image_paths: | |
# image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device) | |
# output = classifier_model(image_tensor) | |
# probabilities = torch.softmax(output, dim=1) | |
# confidence, predicted = torch.max(probabilities, 1) | |
# predicted_class = idx_to_class.get(predicted.item(), "Unknown") | |
# result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()} | |
# # Validate with EdgeFace embeddings if reference image exists | |
# reference_image_path = reference_images.get(predicted_class) | |
# if reference_image_path and os.path.exists(reference_image_path): | |
# unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path) | |
# reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path) | |
# similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item() | |
# result['similarity'] = similarity | |
# result['confirmed'] = similarity >= args.similarity_threshold | |
# else: | |
# raise ValueError(f("Reference image for class '{predicted_class}' " | |
# "not found in {args.reference_dict_path}")) | |
# results.append(result) | |
# # {'image_path': 'tests/test_images/dont_know.jpg', 'predicted_class': 'Robert Downey Jr', | |
# # 'confidence': 0.9292604923248291, 'similarity': 0.603316068649292, 'confirmed': True} | |
return results | |
def inference_and_confirm(args): | |
idx_to_class = load_class_mapping(args.index_to_class_mapping_path) | |
classifier_model = load_model(args.model_path) | |
device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu') | |
classifier_model = classifier_model.to(device) | |
# Load reference images mapping from JSON file | |
try: | |
with open(args.reference_dict_path, 'r') as f: | |
reference_images = json.load(f) | |
except Exception as e: | |
raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}") | |
# Handle single image or directory | |
image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [ | |
os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path) | |
if img.endswith(('.jpg', '.jpeg', '.png')) | |
] | |
results = [] | |
with torch.no_grad(): | |
for image_path in image_paths: | |
image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device) | |
output = classifier_model(image_tensor) | |
probabilities = torch.softmax(output, dim=1) | |
confidence, predicted = torch.max(probabilities, 1) | |
predicted_class = idx_to_class.get(predicted.item(), "Unknown") | |
result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()} | |
# Validate with EdgeFace embeddings if reference image exists | |
reference_image_path = reference_images.get(predicted_class) | |
if reference_image_path and os.path.exists(reference_image_path): | |
unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path) | |
reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path) | |
similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item() | |
result['similarity'] = similarity | |
result['confirmed'] = similarity >= args.similarity_threshold | |
else: | |
result['similarity'] = None | |
result['confirmed'] = False | |
results.append(result) | |
return results | |
def main(args): | |
results = inference_and_confirm(args) | |
for result in results: | |
print(f"Image: {result['image_path']}, Predicted Class: {result['predicted_class']}, " | |
f"Confidence: {result['confidence']:.4f}, Similarity: {result.get('similarity', 'N/A'):.4f}, " | |
f"Confirmed: {result.get('confirmed', 'N/A')}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Face classification with EdgeFace embedding validation.') | |
parser.add_argument('--unknown_image_path', type=str, required=True, help='Path to image or directory.') | |
parser.add_argument('--reference_dict_path', type=str, required=True, help='Path to JSON file mapping classes to reference image paths.') | |
parser.add_argument('--index_to_class_mapping_path', type=str, required=True, help='Path to index-to-class JSON.') | |
parser.add_argument('--model_path', type=str, required=True, help='Path to classifier model (.pth).') | |
parser.add_argument('--edgeface_model_path', type=str, default='ckpts/idiap/edgeface_base.pt', help='EdgeFace model path.') | |
# parser.add_argument('--edgeface_model_dir', type=str, default='ckpts/idiap', help='EdgeFace model directory.') | |
parser.add_argument('--algorithm', type=str, default='yolo', choices=['mtcnn', 'yolo'], help='Face detection algorithm.') | |
parser.add_argument('--accelerator', type=str, default='auto', choices=['cpu', 'gpu', 'auto'], help='Accelerator type.') | |
parser.add_argument('--resolution', type=int, default=224, help='Input image resolution.') | |
parser.add_argument('--similarity_threshold', type=float, default=0.6, help='Cosine similarity threshold.') | |
args = parser.parse_args() | |
main(args) | |
# python src/slimface/inference/end2end_inference.py \ | |
# --unknown_image_path tests/test_images/dont_know.jpg \ | |
# --reference_dict_path tests/reference_image_data.json \ | |
# --index_to_class_mapping_path /content/SlimFace/ckpts/index_to_class_mapping.json \ | |
# --model_path /content/SlimFace/ckpts/SlimFace_efficientnet_b3_full_model.pth \ | |
# --edgeface_model_name edgeface_base \ | |
# --similarity_threshold 0.6 |