import os import sys import torch import torchvision.transforms as transforms from PIL import Image import argparse import warnings import json # Append the parent directory's 'models/edgeface' folder to the system path sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from models.detection_models import align def preprocess_image(image_path, algorithm='yolo', resolution=224): """Preprocess a single image using face alignment and specified resolution.""" if align is None: raise ImportError("face_alignment package is required for preprocessing.") try: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning, message=".*rcond.*") aligned_result = align.get_aligned_face([image_path], algorithm=algorithm) aligned_image = aligned_result[0][1] if aligned_result and len(aligned_result) > 0 else None if aligned_image is None: print(f"Face detection failed for {image_path}, using resized original image") aligned_image = Image.open(image_path).convert('RGB') aligned_image = aligned_image.resize((resolution, resolution), Image.Resampling.LANCZOS) except Exception as e: print(f"Error processing {image_path}: {e}") aligned_image = Image.open(image_path).convert('RGB') aligned_image = aligned_image.resize((resolution, resolution), Image.Resampling.LANCZOS) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image_tensor = transform(aligned_image).unsqueeze(0) # Add batch dimension return image_tensor def load_model(model_path): """Load the trained model in TorchScript format.""" try: model = torch.jit.load(model_path, map_location=torch.device('cpu')) model.eval() return model except Exception as e: raise RuntimeError(f"Failed to load TorchScript model from {model_path}: {e}") def load_class_mapping(index_to_class_mapping_path): """Load class-to-index mapping from the JSON file.""" try: with open(index_to_class_mapping_path, 'r') as f: idx_to_class = json.load(f) # Convert string keys (from JSON) to integers idx_to_class = {int(k): v for k, v in idx_to_class.items()} return idx_to_class except FileNotFoundError: raise FileNotFoundError(f"Index to class mapping file {index_to_class_mapping_path} not found.") except Exception as e: raise ValueError(f"Error loading index to class mapping: {e}") def inference(args): # Load class mapping from JSON file idx_to_class = load_class_mapping(args.index_to_class_mapping_path) # Load model model = load_model(args.model_path) # Process input images device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu') model = model.to(device) image_paths = [] if os.path.isdir(args.input_path): for img_name in os.listdir(args.input_path): if img_name.endswith(('.jpg', '.jpeg', '.png')): image_paths.append(os.path.join(args.input_path, img_name)) else: if args.input_path.endswith(('.jpg', '.jpeg', '.png')): image_paths.append(args.input_path) else: raise ValueError("Input path must be a directory or a valid image file.") # Perform inference results = [] with torch.no_grad(): for image_path in image_paths: image_tensor = preprocess_image(image_path, algorithm=args.algorithm, resolution=args.resolution) image_tensor = image_tensor.to(device) output = model(image_tensor) probabilities = torch.softmax(output, dim=1) confidence, predicted = torch.max(probabilities, 1) predicted_class = idx_to_class.get(predicted.item(), "Unknown") results.append({ 'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item() }) def main(args): results = inference(args) # Output results for result in results: print(f"Image: {result['image_path']}") print(f"Predicted Class: {result['predicted_class']}") print(f"Confidence: {result['confidence']:.4f}") if __name__ == '__main__': parser = argparse.ArgumentParser(description='Perform inference with a trained face classification model.') parser.add_argument('--input_path', type=str, required=True, help='Path to an image or directory of images for inference.') parser.add_argument('--index_to_class_mapping_path', type=str, required=True, help='Path to the JSON file containing index to class mapping.') parser.add_argument('--model_path', type=str, required=True, help='Path to the trained full model in TorchScript format (.pth file).') parser.add_argument('--algorithm', type=str, default='yolo', choices=['mtcnn', 'yolo'], help='Face detection algorithm to use (mtcnn or yolo).') parser.add_argument('--accelerator', type=str, default='auto', choices=['cpu', 'gpu', 'auto'], help='Accelerator type for inference.') parser.add_argument('--resolution', type=int, default=224, help='Resolution for input images (default: 224).') args = parser.parse_args() main(args)