Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils import remove_weight_norm | |
from torch.utils.checkpoint import checkpoint | |
from rvc.lib.algorithm.commons import init_weights, get_padding | |
class ResBlock(nn.Module): | |
""" | |
Residual block with multiple dilated convolutions. | |
This block applies a sequence of dilated convolutional layers with Leaky ReLU activation. | |
It's designed to capture information at different scales due to the varying dilation rates. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
kernel_size (int, optional): Kernel size for the convolutional layers. Defaults to 7. | |
dilation (tuple[int], optional): Tuple of dilation rates for the convolutional layers. Defaults to (1, 3, 5). | |
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation. Defaults to 0.2. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
kernel_size: int = 7, | |
dilation: tuple[int] = (1, 3, 5), | |
leaky_relu_slope: float = 0.2, | |
): | |
super().__init__() | |
self.leaky_relu_slope = leaky_relu_slope | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
dilation=d, | |
padding=get_padding(kernel_size, d), | |
) | |
) | |
for d in dilation | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
) | |
for d in dilation | |
] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x: torch.Tensor): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, self.leaky_relu_slope) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, self.leaky_relu_slope) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
remove_weight_norm(c1) | |
remove_weight_norm(c2) | |
class AdaIN(nn.Module): | |
""" | |
Adaptive Instance Normalization layer. | |
This layer applies a scaling factor to the input based on a learnable weight. | |
Args: | |
channels (int): Number of input channels. | |
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation applied after scaling. Defaults to 0.2. | |
""" | |
def __init__( | |
self, | |
*, | |
channels: int, | |
leaky_relu_slope: float = 0.2, | |
): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(channels)) | |
# safe to use in-place as it is used on a new x+gaussian tensor | |
self.activation = nn.LeakyReLU(leaky_relu_slope) | |
def forward(self, x: torch.Tensor): | |
gaussian = torch.randn_like(x) * self.weight[None, :, None] | |
return self.activation(x + gaussian) | |
class ParallelResBlock(nn.Module): | |
""" | |
Parallel residual block that applies multiple residual blocks with different kernel sizes in parallel. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
kernel_sizes (tuple[int], optional): Tuple of kernel sizes for the parallel residual blocks. Defaults to (3, 7, 11). | |
dilation (tuple[int], optional): Tuple of dilation rates for the convolutional layers within the residual blocks. Defaults to (1, 3, 5). | |
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation. Defaults to 0.2. | |
""" | |
def __init__( | |
self, | |
*, | |
in_channels: int, | |
out_channels: int, | |
kernel_sizes: tuple[int] = (3, 7, 11), | |
dilation: tuple[int] = (1, 3, 5), | |
leaky_relu_slope: float = 0.2, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.input_conv = nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=7, | |
stride=1, | |
padding=3, | |
) | |
self.input_conv.apply(init_weights) | |
self.blocks = nn.ModuleList( | |
[ | |
nn.Sequential( | |
AdaIN(channels=out_channels), | |
ResBlock( | |
out_channels, | |
kernel_size=kernel_size, | |
dilation=dilation, | |
leaky_relu_slope=leaky_relu_slope, | |
), | |
AdaIN(channels=out_channels), | |
) | |
for kernel_size in kernel_sizes | |
] | |
) | |
def forward(self, x: torch.Tensor): | |
x = self.input_conv(x) | |
return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0) | |
def remove_weight_norm(self): | |
remove_weight_norm(self.input_conv) | |
for block in self.blocks: | |
block[1].remove_weight_norm() | |
class SineGenerator(nn.Module): | |
""" | |
Definition of sine generator | |
Generates sine waveforms with optional harmonics and additive noise. | |
Can be used to create harmonic noise source for neural vocoders. | |
Args: | |
samp_rate (int): Sampling rate in Hz. | |
harmonic_num (int): Number of harmonic overtones (default 0). | |
sine_amp (float): Amplitude of sine-waveform (default 0.1). | |
noise_std (float): Standard deviation of Gaussian noise (default 0.003). | |
voiced_threshold (float): F0 threshold for voiced/unvoiced classification (default 0). | |
""" | |
def __init__( | |
self, | |
samp_rate, | |
harmonic_num=0, | |
sine_amp=0.1, | |
noise_std=0.003, | |
voiced_threshold=0, | |
): | |
super(SineGenerator, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
self.merge = nn.Sequential( | |
nn.Linear(self.dim, 1, bias=False), | |
nn.Tanh(), | |
) | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = torch.ones_like(f0) | |
uv = uv * (f0 > self.voiced_threshold) | |
return uv | |
def _f02sine(self, f0_values): | |
"""f0_values: (batchsize, length, dim) | |
where dim indicates fundamental tone and overtones | |
""" | |
# convert to F0 in rad. The integer part n can be ignored | |
# because 2 * np.pi * n doesn't affect phase | |
rad_values = (f0_values / self.sampling_rate) % 1 | |
# initial phase noise (no noise for fundamental component) | |
rand_ini = torch.rand( | |
f0_values.shape[0], f0_values.shape[2], device=f0_values.device | |
) | |
rand_ini[:, 0] = 0 | |
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 | |
cumsum_shift = torch.zeros_like(rad_values) | |
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi) | |
return sines | |
def forward(self, f0): | |
with torch.no_grad(): | |
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) | |
# fundamental component | |
f0_buf[:, :, 0] = f0[:, :, 0] | |
for idx in np.arange(self.harmonic_num): | |
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) | |
sine_waves = self._f02sine(f0_buf) * self.sine_amp | |
uv = self._f02uv(f0) | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
sine_waves = sine_waves * uv + noise | |
# merge with grad | |
return self.merge(sine_waves) | |
class RefineGANGenerator(nn.Module): | |
""" | |
RefineGAN generator for audio synthesis. | |
This generator uses a combination of downsampling, residual blocks, and parallel residual blocks | |
to refine an input mel-spectrogram and fundamental frequency (F0) into an audio waveform. | |
It can also incorporate global conditioning. | |
Args: | |
sample_rate (int, optional): Sampling rate of the audio. Defaults to 44100. | |
downsample_rates (tuple[int], optional): Downsampling rates for the downsampling blocks. Defaults to (2, 2, 8, 8). | |
upsample_rates (tuple[int], optional): Upsampling rates for the upsampling blocks. Defaults to (8, 8, 2, 2). | |
leaky_relu_slope (float, optional): Slope for the Leaky ReLU activation. Defaults to 0.2. | |
num_mels (int, optional): Number of mel-frequency bins in the input mel-spectrogram. Defaults to 128. | |
start_channels (int, optional): Number of channels in the initial convolutional layer. Defaults to 16. | |
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 256. | |
checkpointing (bool, optional): Whether to use checkpointing for memory efficiency. Defaults to False. | |
""" | |
def __init__( | |
self, | |
*, | |
sample_rate: int = 44100, | |
downsample_rates: tuple[int] = (2, 2, 8, 8), # unused | |
upsample_rates: tuple[int] = (8, 8, 2, 2), | |
leaky_relu_slope: float = 0.2, | |
num_mels: int = 128, | |
start_channels: int = 16, # unused | |
gin_channels: int = 256, | |
checkpointing: bool = False, | |
upsample_initial_channel=512, | |
): | |
super().__init__() | |
self.upsample_rates = upsample_rates | |
self.leaky_relu_slope = leaky_relu_slope | |
self.checkpointing = checkpointing | |
self.upp = np.prod(upsample_rates) | |
self.m_source = SineGenerator(sample_rate) | |
# expanded f0 sinegen -> match mel_conv | |
self.pre_conv = weight_norm( | |
nn.Conv1d( | |
1, | |
upsample_initial_channel // 2, | |
7, | |
1, | |
padding=3, | |
) | |
) | |
stride_f0s = [ | |
math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 | |
for i in range(len(upsample_rates)) | |
] | |
channels = upsample_initial_channel | |
self.downsample_blocks = nn.ModuleList([]) | |
for i, u in enumerate(upsample_rates): | |
# handling odd upsampling rates | |
stride = stride_f0s[i] | |
kernel = 1 if stride == 1 else stride * 2 - stride % 2 | |
padding = 0 if stride == 1 else (kernel - stride) // 2 | |
# f0 input gets upscaled to full segment size, then downscaled back to match each upscale step | |
self.downsample_blocks.append( | |
weight_norm( | |
nn.Conv1d( | |
1, | |
channels // 2 ** (i + 2), | |
kernel, | |
stride, | |
padding=padding, | |
) | |
) | |
) | |
self.mel_conv = weight_norm( | |
nn.Conv1d( | |
num_mels, | |
channels // 2, | |
7, | |
1, | |
padding=3, | |
) | |
) | |
self.mel_conv.apply(init_weights) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(256, channels // 2, 1) | |
self.upsample_blocks = nn.ModuleList([]) | |
self.upsample_conv_blocks = nn.ModuleList([]) | |
for rate in upsample_rates: | |
new_channels = channels // 2 | |
self.upsample_blocks.append(nn.Upsample(scale_factor=rate, mode="linear")) | |
self.upsample_conv_blocks.append( | |
ParallelResBlock( | |
in_channels=channels + channels // 4, | |
out_channels=new_channels, | |
kernel_sizes=(3, 7, 11), | |
dilation=(1, 3, 5), | |
leaky_relu_slope=leaky_relu_slope, | |
) | |
) | |
channels = new_channels | |
self.conv_post = weight_norm( | |
nn.Conv1d(channels, 1, 7, 1, padding=3, bias=False) | |
) | |
self.conv_post.apply(init_weights) | |
def forward(self, mel: torch.Tensor, f0: torch.Tensor, g: torch.Tensor = None): | |
f0 = F.interpolate( | |
f0.unsqueeze(1), size=mel.shape[-1] * self.upp, mode="linear" | |
) | |
har_source = self.m_source(f0.transpose(1, 2)).transpose(1, 2) | |
x = self.pre_conv(har_source) | |
x = F.interpolate(x, size=mel.shape[-1], mode="linear") | |
# expanding spectrogram from 192 to 256 channels | |
mel = self.mel_conv(mel) | |
if g is not None: | |
# adding expanded speaker embedding | |
mel = mel + self.cond(g) | |
x = torch.cat([mel, x], dim=1) | |
for ups, res, down in zip( | |
self.upsample_blocks, | |
self.upsample_conv_blocks, | |
self.downsample_blocks, | |
): | |
x = F.leaky_relu(x, self.leaky_relu_slope) | |
if self.training and self.checkpointing: | |
x = checkpoint(ups, x, use_reentrant=False) | |
x = torch.cat([x, down(har_source)], dim=1) | |
x = checkpoint(res, x, use_reentrant=False) | |
else: | |
x = ups(x) | |
x = torch.cat([x, down(har_source)], dim=1) | |
x = res(x) | |
x = F.leaky_relu(x, self.leaky_relu_slope) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
remove_weight_norm(self.pre_conv) | |
remove_weight_norm(self.mel_conv) | |
remove_weight_norm(self.conv_post) | |
for block in self.downsample_blocks: | |
block.remove_weight_norm() | |
for block in self.upsample_conv_blocks: | |
block.remove_weight_norm() | |