Spaces:
Sleeping
Sleeping
File size: 11,035 Bytes
89f19e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
#!/bin/bash
# Knowledge Base Synchronization Script
# Syncs content from multiple GitHub repositories and generates embeddings
# Usage: ./sync-knowledge.sh
set -euo pipefail
# Configuration
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
PROJECT_ROOT="$(dirname "$SCRIPT_DIR")"
KNOWLEDGE_DIR="$PROJECT_ROOT/knowledge"
TEMP_DIR="/tmp/kb-sync-$$"
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
log_info() {
echo -e "${GREEN}[INFO]${NC} $1"
}
log_warn() {
echo -e "${YELLOW}[WARN]${NC} $1"
}
log_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
log_debug() {
echo -e "${BLUE}[DEBUG]${NC} $1"
}
# Cleanup function
cleanup() {
log_info "Cleaning up temporary files..."
rm -rf "$TEMP_DIR"
}
# Set trap for cleanup
trap cleanup EXIT
# Check dependencies
check_dependencies() {
local deps=("git" "curl" "jq")
for dep in "${deps[@]}"; do
if ! command -v "$dep" > /dev/null; then
log_error "Required dependency not found: $dep"
exit 1
fi
done
}
# Load environment variables
load_env() {
if [[ -f "$PROJECT_ROOT/.env" ]]; then
source "$PROJECT_ROOT/.env"
else
log_error ".env file not found. Copy .env.example and configure it."
exit 1
fi
}
# Clone or update repository
sync_repository() {
local repo_url="$1"
local target_path="$2"
local branch="${3:-main}"
local subpath="$4"
log_info "Syncing repository: $repo_url"
log_debug "Target: $target_path, Branch: $branch, Subpath: $subpath"
local repo_name=$(basename "$repo_url" .git)
local temp_repo_path="$TEMP_DIR/$repo_name"
# Clone repository to temp directory
git clone --depth 1 --branch "$branch" "$repo_url" "$temp_repo_path" || {
log_error "Failed to clone repository: $repo_url"
return 1
}
# Copy specific subpath to target
local source_path="$temp_repo_path/$subpath"
if [[ -d "$source_path" ]]; then
mkdir -p "$(dirname "$target_path")"
cp -r "$source_path/." "$target_path/"
log_info "Successfully synced to: $target_path"
else
log_warn "Subpath not found: $subpath in $repo_url"
return 1
fi
}
# Generate embeddings for knowledge content
generate_embeddings() {
local knowledge_path="$1"
local collection_name="$2"
log_info "Generating embeddings for: $collection_name"
# Create Python script for embedding generation
cat > "$TEMP_DIR/generate_embeddings.py" << 'EOF'
import os
import json
import sys
from pathlib import Path
import hashlib
import requests
from sentence_transformers import SentenceTransformer
def load_model():
"""Load sentence transformer model"""
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
def process_text_files(knowledge_path, collection_name):
"""Process text files and generate embeddings"""
model = load_model()
if not model:
return False
embeddings_data = []
knowledge_path = Path(knowledge_path)
# Process markdown and text files
for file_path in knowledge_path.rglob("*.md"):
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Generate embedding
embedding = model.encode(content).tolist()
# Create document metadata
doc_id = hashlib.md5(str(file_path).encode()).hexdigest()
embeddings_data.append({
"id": doc_id,
"content": content,
"embedding": embedding,
"metadata": {
"file_path": str(file_path.relative_to(knowledge_path)),
"file_name": file_path.name,
"collection": collection_name,
"content_type": "markdown",
"size": len(content)
}
})
except Exception as e:
print(f"Error processing file {file_path}: {e}")
# Save embeddings to JSON file
output_file = knowledge_path / f"{collection_name}_embeddings.json"
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(embeddings_data, f, indent=2, ensure_ascii=False)
print(f"Generated {len(embeddings_data)} embeddings for {collection_name}")
return True
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python generate_embeddings.py <knowledge_path> <collection_name>")
sys.exit(1)
knowledge_path = sys.argv[1]
collection_name = sys.argv[2]
if process_text_files(knowledge_path, collection_name):
print("Embedding generation completed successfully")
else:
print("Embedding generation failed")
sys.exit(1)
EOF
# Run embedding generation
python3 "$TEMP_DIR/generate_embeddings.py" "$knowledge_path" "$collection_name" || {
log_error "Failed to generate embeddings for $collection_name"
return 1
}
}
# Upload embeddings to vector store
upload_embeddings() {
local embeddings_file="$1"
local collection_name="$2"
log_info "Uploading embeddings to vector store: $collection_name"
if [[ ! -f "$embeddings_file" ]]; then
log_error "Embeddings file not found: $embeddings_file"
return 1
fi
# Upload to ChromaDB
local chroma_url="http://${CHROMA_HOST:-localhost}:${CHROMA_PORT:-8000}"
curl -X POST "$chroma_url/api/v1/collections" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${CHROMA_AUTH_TOKEN}" \
-d "{\"name\": \"$collection_name\"}" || true
# Process and upload embeddings in batches
python3 - << EOF
import json
import requests
import sys
from pathlib import Path
def upload_batch(embeddings_data, collection_name, chroma_url, auth_token):
"""Upload embeddings in batches to ChromaDB"""
batch_size = 100
total_docs = len(embeddings_data)
for i in range(0, total_docs, batch_size):
batch = embeddings_data[i:i+batch_size]
# Prepare batch data for ChromaDB
ids = [doc["id"] for doc in batch]
embeddings = [doc["embedding"] for doc in batch]
metadatas = [doc["metadata"] for doc in batch]
documents = [doc["content"] for doc in batch]
payload = {
"ids": ids,
"embeddings": embeddings,
"metadatas": metadatas,
"documents": documents
}
try:
response = requests.post(
f"{chroma_url}/api/v1/collections/{collection_name}/add",
json=payload,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {auth_token}"
},
timeout=30
)
if response.status_code == 200:
print(f"Uploaded batch {i//batch_size + 1} ({len(batch)} documents)")
else:
print(f"Error uploading batch {i//batch_size + 1}: {response.status_code}")
print(f"Response: {response.text}")
except Exception as e:
print(f"Error uploading batch {i//batch_size + 1}: {e}")
continue
# Load and upload embeddings
embeddings_file = "$embeddings_file"
collection_name = "$collection_name"
chroma_url = "$chroma_url"
auth_token = "${CHROMA_AUTH_TOKEN:-}"
try:
with open(embeddings_file, 'r', encoding='utf-8') as f:
embeddings_data = json.load(f)
upload_batch(embeddings_data, collection_name, chroma_url, auth_token)
print(f"Successfully uploaded {len(embeddings_data)} embeddings to {collection_name}")
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
EOF
}
# Sync all knowledge repositories
sync_all_repositories() {
log_info "Starting knowledge base synchronization..."
mkdir -p "$TEMP_DIR"
# Repository configurations
declare -A repos=(
["n8n"]="${KB_REPO_N8N:-}:${KB_PATH_N8N:-projects/n8n}"
["videos-e-animacoes"]="${KB_REPO_N8N:-}:${KB_PATH_VIDEOS:-projects/videos-e-animacoes}"
["midjourney-prompt"]="${KB_REPO_N8N:-}:${KB_PATH_MIDJOURNEY:-projects/midjorney-prompt}"
)
for collection in "${!repos[@]}"; do
local repo_config="${repos[$collection]}"
local repo_url=$(echo "$repo_config" | cut -d':' -f1)
local subpath=$(echo "$repo_config" | cut -d':' -f2)
local target_path="$KNOWLEDGE_DIR/$collection"
if [[ -n "$repo_url" ]]; then
log_info "Syncing collection: $collection"
# Sync repository
sync_repository "$repo_url" "$target_path" "${KB_BRANCH_N8N:-main}" "$subpath"
# Generate embeddings
generate_embeddings "$target_path" "$collection"
# Upload to vector store
local embeddings_file="$target_path/${collection}_embeddings.json"
if [[ -f "$embeddings_file" ]]; then
upload_embeddings "$embeddings_file" "$collection"
fi
else
log_warn "Repository URL not configured for collection: $collection"
fi
done
}
# Update n8n with new knowledge
update_n8n_knowledge() {
log_info "Notifying n8n of knowledge base updates..."
# Create a webhook trigger to refresh knowledge in n8n workflows
if [[ -n "${WEBHOOK_URL:-}" ]]; then
local webhook_endpoint="$WEBHOOK_URL/webhook/knowledge-sync"
curl -X POST "$webhook_endpoint" \
-H "Content-Type: application/json" \
-d "{\"event\": \"knowledge_updated\", \"timestamp\": \"$(date -Iseconds)\"}" \
> /dev/null 2>&1 || {
log_warn "Failed to notify n8n of knowledge updates"
}
fi
}
# Main synchronization process
main() {
log_info "Starting knowledge base synchronization"
# Preliminary checks
check_dependencies
load_env
# Create knowledge directories
mkdir -p "$KNOWLEDGE_DIR"/{n8n,videos-e-animacoes,midjourney-prompt}
# Sync all repositories
sync_all_repositories
# Update n8n
update_n8n_knowledge
log_info "Knowledge base synchronization completed"
# Generate summary
log_info "Synchronization Summary:"
find "$KNOWLEDGE_DIR" -name "*_embeddings.json" -exec basename {} \; | while read file; do
local collection=$(echo "$file" | sed 's/_embeddings.json//')
local count=$(jq '. | length' "$KNOWLEDGE_DIR/$collection/$file" 2>/dev/null || echo "0")
log_info " - $collection: $count documents"
done
}
# Run main function
main "$@" |