File size: 5,491 Bytes
bd161ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
Hugging Face API router for model inference endpoints.
"""
from fastapi import APIRouter, HTTPException, Depends
from typing import Dict, List, Optional, Any
from pydantic import BaseModel
import logging

from services.huggingface_service import HuggingFaceService
from dependencies import get_current_user
from models import User

logger = logging.getLogger(__name__)

router = APIRouter()
hf_service = HuggingFaceService()


class TextGenerationRequest(BaseModel):
    prompt: str
    model_name: Optional[str] = None
    max_length: int = 2048
    temperature: float = 0.7
    use_local: bool = False


class EmbeddingRequest(BaseModel):
    text: str
    model_name: str = "sentence-transformers/all-MiniLM-L6-v2"


class ClassificationRequest(BaseModel):
    text: str
    model_name: str = "distilbert-base-uncased-finetuned-sst-2-english"


class TranslationRequest(BaseModel):
    text: str
    source_lang: str = "en"
    target_lang: str = "es"
    model_name: str = "Helsinki-NLP/opus-mt-en-es"


@router.get("/status")
async def get_hf_status(current_user: User = Depends(get_current_user)):
    """Get Hugging Face service status."""
    try:
        status = hf_service.get_service_status()
        return {
            "success": True,
            "status": status
        }
    except Exception as e:
        logger.error(f"Error getting HF status: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/models")
async def get_available_models(current_user: User = Depends(get_current_user)):
    """Get available Hugging Face models."""
    try:
        models = hf_service.get_available_models()
        return {
            "success": True,
            "models": models
        }
    except Exception as e:
        logger.error(f"Error getting available models: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/generate")
async def generate_text(
    request: TextGenerationRequest,
    current_user: User = Depends(get_current_user)
):
    """Generate text using Hugging Face models."""
    try:
        result = await hf_service.generate_text(
            prompt=request.prompt,
            model_name=request.model_name,
            max_length=request.max_length,
            temperature=request.temperature,
            use_local=request.use_local
        )
        
        return {
            "success": True,
            "generated_text": result,
            "prompt": request.prompt,
            "model_used": request.model_name or "default"
        }
    except Exception as e:
        logger.error(f"Error generating text: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/embed")
async def create_embedding(
    request: EmbeddingRequest,
    current_user: User = Depends(get_current_user)
):
    """Create embedding using Hugging Face models."""
    try:
        embedding = await hf_service.create_embedding(
            text=request.text,
            model_name=request.model_name
        )
        
        return {
            "success": True,
            "embedding": embedding,
            "text": request.text,
            "model_used": request.model_name,
            "embedding_dimension": len(embedding)
        }
    except Exception as e:
        logger.error(f"Error creating embedding: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/classify")
async def classify_text(
    request: ClassificationRequest,
    current_user: User = Depends(get_current_user)
):
    """Classify text using Hugging Face models."""
    try:
        result = await hf_service.classify_text(
            text=request.text,
            model_name=request.model_name
        )
        
        return {
            "success": True,
            "classification": result,
            "text": request.text,
            "model_used": request.model_name
        }
    except Exception as e:
        logger.error(f"Error classifying text: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/translate")
async def translate_text(
    request: TranslationRequest,
    current_user: User = Depends(get_current_user)
):
    """Translate text using Hugging Face models."""
    try:
        result = await hf_service.translate_text(
            text=request.text,
            source_lang=request.source_lang,
            target_lang=request.target_lang,
            model_name=request.model_name
        )
        
        return {
            "success": True,
            "translation": result,
            "original_text": request.text,
            "source_language": request.source_lang,
            "target_language": request.target_lang,
            "model_used": request.model_name
        }
    except Exception as e:
        logger.error(f"Error translating text: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/health")
async def hf_health_check():
    """Health check for Hugging Face service."""
    try:
        status = hf_service.get_service_status()
        return {
            "status": "healthy" if (status["client_initialized"] or status["local_model_loaded"]) else "unhealthy",
            "service": "huggingface",
            "details": status
        }
    except Exception as e:
        logger.error(f"HF health check failed: {e}")
        return {
            "status": "unhealthy",
            "service": "huggingface",
            "error": str(e)
        }