Spaces:
Sleeping
Sleeping
File size: 24,393 Bytes
e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
"""
Conversation Service for Advanced AI Chatbot
Implements memory management, context awareness, and natural language processing
"""
import logging
import json
import re
from typing import Dict, List, Optional, Any, Tuple
from datetime import datetime, timezone
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, and_
from sqlalchemy.orm import selectinload
from models import ConversationMemory, CrossModuleMemory, ConversationMessage, GPTModeSession
from services.ai_service_manager import AIServiceManager
from services.rag_service import RAGService
logger = logging.getLogger(__name__)
class ConversationService:
"""Advanced conversation service with memory management and context awareness."""
def __init__(self):
self.ai_service = AIServiceManager()
self.rag_service = RAGService()
# Intent patterns for natural language understanding
self.intent_patterns = {
"greeting": [
r"\b(hi|hello|hey|good morning|good afternoon|good evening)\b",
r"\b(start|begin|ready|let's go|let's begin)\b"
],
"question": [
r"\b(what|how|why|when|where|who|which|can you|could you|would you)\b",
r"\b(explain|tell me|describe|clarify|help)\b"
],
"answer": [
r"\b(it's|it is|this is|that is|my|our|we|i)\b",
r"\b(about|regarding|concerning|related to)\b"
],
"clarification": [
r"\b(what do you mean|i don't understand|can you explain|clarify)\b",
r"\b(rephrase|repeat|say that again)\b"
],
"edit_request": [
r"\b(edit|change|modify|update|revise|correct)\b",
r"\b(wrong|incorrect|not right|different)\b"
],
"skip": [
r"\b(skip|pass|next|move on|continue|not applicable)\b",
r"\b(don't know|not sure|no idea)\b"
]
}
async def create_conversation_memory(
self,
db: AsyncSession,
project_id: str,
session_id: str,
module_id: str,
user_id: str # Add user_id parameter
) -> ConversationMemory:
"""Create a new conversation memory for a session."""
try:
# Check if memory already exists for this user
result = await db.execute(
select(ConversationMemory).where(
and_(
ConversationMemory.project_id == project_id,
ConversationMemory.session_id == session_id,
ConversationMemory.module_id == module_id,
ConversationMemory.user_id == user_id # Add user filter
)
)
)
existing_memory = result.scalar_one_or_none()
if existing_memory:
return existing_memory
# Create new memory
memory = ConversationMemory(
project_id=project_id,
session_id=session_id,
module_id=module_id,
user_id=user_id, # Add user_id
conversation_history=[],
context_summary="",
user_profile={},
conversation_state={
"current_question": 0,
"questions_answered": 0,
"total_questions": 0,
"conversation_flow": "welcome",
"last_intent": None
}
)
db.add(memory)
await db.commit()
await db.refresh(memory)
return memory
except Exception as e:
logger.error(f"Error creating conversation memory: {e}")
await db.rollback()
raise
async def get_or_create_cross_module_memory(
self,
db: AsyncSession,
project_id: str,
user_id: str # Add user_id parameter
) -> CrossModuleMemory:
"""Get or create cross-module memory for a project."""
try:
# Check if cross-module memory exists for this user
result = await db.execute(
select(CrossModuleMemory).where(
and_(
CrossModuleMemory.project_id == project_id,
CrossModuleMemory.user_id == user_id # Add user filter
)
)
)
existing_memory = result.scalar_one_or_none()
if existing_memory:
return existing_memory
# Create new cross-module memory
memory = CrossModuleMemory(
project_id=project_id,
user_id=user_id, # Add user_id
business_context={},
user_preferences={},
project_goals={},
key_insights=[],
completed_modules=[],
module_outputs={},
context_embeddings=[]
)
db.add(memory)
await db.commit()
await db.refresh(memory)
return memory
except Exception as e:
logger.error(f"Error getting or creating cross-module memory: {e}")
await db.rollback()
raise
async def add_message_to_memory(
self,
db: AsyncSession,
memory_id: str,
role: str,
content: str,
message_type: str = "text",
context_data: dict = None
) -> ConversationMessage:
"""Add a message to conversation memory."""
try:
# Detect intent
intent, confidence = self._detect_intent(content)
# Estimate token count (rough approximation)
tokens_used = len(content.split()) * 1.3 # Rough token estimation
message = ConversationMessage(
conversation_memory_id=memory_id,
role=role,
content=content,
message_type=message_type,
context_data=context_data or {},
intent=intent,
confidence=confidence,
tokens_used=int(tokens_used)
)
db.add(message)
await db.commit()
await db.refresh(message)
return message
except Exception as e:
logger.error(f"Error adding message to memory: {e}")
await db.rollback()
raise
def _detect_intent(self, text: str) -> Tuple[str, float]:
"""Detect the intent of a user message."""
text_lower = text.lower()
max_confidence = 0.0
detected_intent = "general"
for intent, patterns in self.intent_patterns.items():
for pattern in patterns:
matches = re.findall(pattern, text_lower)
if matches:
confidence = len(matches) / len(text_lower.split())
if confidence > max_confidence:
max_confidence = confidence
detected_intent = intent
return detected_intent, max_confidence
async def get_conversation_context(
self,
db: AsyncSession,
memory_id: str,
max_messages: int = 10
) -> Dict[str, Any]:
"""Get conversation context for AI processing."""
try:
# Get recent messages
result = await db.execute(
select(ConversationMessage)
.where(ConversationMessage.conversation_memory_id == memory_id)
.order_by(ConversationMessage.created_at.desc())
.limit(max_messages)
)
messages = result.scalars().all()
# Get memory object
result = await db.execute(
select(ConversationMemory).where(ConversationMemory.id == memory_id)
)
memory = result.scalar_one_or_none()
if not memory:
return {"messages": [], "context": "", "state": {}}
# Format messages for AI context
formatted_messages = []
for msg in reversed(messages): # Reverse to get chronological order
formatted_messages.append({
"role": msg.role,
"content": msg.content,
"intent": msg.intent,
"timestamp": msg.created_at.isoformat()
})
return {
"messages": formatted_messages,
"context": memory.context_summary,
"state": memory.conversation_state,
"user_profile": memory.user_profile
}
except Exception as e:
logger.error(f"Error getting conversation context: {e}")
return {"messages": [], "context": "", "state": {}}
async def update_conversation_state(
self,
db: AsyncSession,
memory_id: str,
state_updates: dict
):
"""Update conversation state."""
try:
result = await db.execute(
select(ConversationMemory).where(ConversationMemory.id == memory_id)
)
memory = result.scalar_one_or_none()
if memory:
memory.conversation_state.update(state_updates)
memory.last_updated = datetime.now(timezone.utc)
await db.commit()
except Exception as e:
logger.error(f"Error updating conversation state: {e}")
await db.rollback()
async def generate_context_summary(
self,
db: AsyncSession,
memory_id: str
) -> str:
"""Generate a summary of conversation context for memory management."""
try:
context = await self.get_conversation_context(db, memory_id, max_messages=20)
if not context["messages"]:
return ""
# Create summary prompt
messages_text = "\n".join([
f"{msg['role']}: {msg['content']}"
for msg in context["messages"][-10:] # Last 10 messages
])
summary_prompt = f"""
Based on the following conversation, create a concise summary of the key points,
user preferences, and important information that should be remembered for future context.
Conversation:
{messages_text}
Summary:
"""
summary = await self.ai_service.generate_content(
prompt=summary_prompt,
temperature=0.3,
max_tokens=200
)
# Update memory with new summary
result = await db.execute(
select(ConversationMemory).where(ConversationMemory.id == memory_id)
)
memory = result.scalar_one_or_none()
if memory:
memory.context_summary = summary
memory.last_updated = datetime.now(timezone.utc)
await db.commit()
return summary
except Exception as e:
logger.error(f"Error generating context summary: {e}")
return ""
async def process_natural_message(
self,
db: AsyncSession,
project_id: str,
session_id: str,
module_id: str,
user_id: str, # Add user_id parameter
user_message: str,
module_questions: List[str]
) -> Dict[str, Any]:
"""Process a natural language message with full context awareness."""
try:
# Get or create conversation memory
memory = await self.create_conversation_memory(db, project_id, session_id, module_id, user_id)
# Get cross-module memory
cross_memory = await self.get_or_create_cross_module_memory(db, project_id, user_id)
# Add user message to memory
await self.add_message_to_memory(
db, memory.id, "user", user_message, "text"
)
# Get conversation context
context = await self.get_conversation_context(db, memory.id)
# Detect intent
intent, confidence = self._detect_intent(user_message)
# Update conversation state
current_state = memory.conversation_state
current_question = current_state.get("current_question", 0)
# Process based on intent and context
if intent == "greeting" and current_question == 0:
# Welcome message and first question
response = await self._handle_greeting(db, memory, module_questions, context, cross_memory)
elif intent == "question":
# User is asking a question
response = await self._handle_user_question(db, memory, user_message, context, cross_memory)
elif intent == "edit_request":
# User wants to edit something
response = await self._handle_edit_request(db, memory, user_message, context)
elif intent == "skip":
# User wants to skip current question
response = await self._handle_skip(db, memory, module_questions, context)
else:
# Treat as potential answer to current question
response = await self._handle_potential_answer(
db, memory, user_message, module_questions, context, cross_memory
)
# Add assistant response to memory
await self.add_message_to_memory(
db, memory.id, "assistant", response["message"], "response"
)
# Update conversation state
await self.update_conversation_state(db, memory.id, {
"current_question": response.get("current_question", current_question),
"last_intent": intent,
"conversation_flow": response.get("flow", "normal")
})
# Generate context summary if needed (every 5 messages)
message_count = len(context["messages"])
if message_count % 5 == 0:
await self.generate_context_summary(db, memory.id)
return response
except Exception as e:
logger.error(f"Error processing natural message: {e}")
return {
"message": "I'm having trouble processing that. Could you please rephrase?",
"is_question": True,
"current_question": module_questions[0] if module_questions else "",
"flow": "error"
}
async def _handle_greeting(
self,
db: AsyncSession,
memory: ConversationMemory,
module_questions: List[str],
context: dict,
cross_memory: CrossModuleMemory
) -> Dict[str, Any]:
"""Handle greeting and start conversation."""
# Generate personalized welcome message
welcome_prompt = f"""
You are a helpful business consultant. Generate a warm, personalized welcome message
for starting a conversation about {memory.module_id}.
Context from previous modules: {cross_memory.business_context}
User preferences: {cross_memory.user_preferences}
Make it conversational and encouraging. Then ask the first question naturally.
"""
welcome_message = await self.ai_service.generate_content(
prompt=welcome_prompt,
temperature=0.7
)
first_question = module_questions[0] if module_questions else ""
return {
"message": f"{welcome_message}\n\n{first_question}",
"is_question": True,
"current_question": 0,
"flow": "welcome"
}
async def _handle_user_question(
self,
db: AsyncSession,
memory: ConversationMemory,
user_message: str,
context: dict,
cross_memory: CrossModuleMemory
) -> Dict[str, Any]:
"""Handle when user asks a question."""
# Generate contextual answer
answer_prompt = f"""
You are a helpful business consultant. The user is asking: "{user_message}"
Conversation context: {context['context']}
Business context: {cross_memory.business_context}
Provide a helpful, contextual answer. If the question is about the current process,
guide them back to the current question naturally.
"""
answer = await self.ai_service.generate_content(
prompt=answer_prompt,
temperature=0.7
)
# Get current question
current_state = memory.conversation_state
current_question = current_state.get("current_question", 0)
module_questions = self._get_module_questions(memory.module_id)
if current_question < len(module_questions):
current_q = module_questions[current_question]
return {
"message": f"{answer}\n\nNow, back to our current question: {current_q}",
"is_question": True,
"current_question": current_question,
"flow": "clarification"
}
else:
return {
"message": answer,
"is_question": False,
"flow": "answer"
}
async def _handle_edit_request(
self,
db: AsyncSession,
memory: ConversationMemory,
user_message: str,
context: dict
) -> Dict[str, Any]:
"""Handle edit requests."""
return {
"message": "I'd be happy to help you edit that! What would you like to change?",
"is_question": False,
"flow": "edit"
}
async def _handle_skip(
self,
db: AsyncSession,
memory: ConversationMemory,
module_questions: List[str],
context: dict
) -> Dict[str, Any]:
"""Handle skip requests."""
current_state = memory.conversation_state
current_question = current_state.get("current_question", 0)
if current_question + 1 < len(module_questions):
next_question = module_questions[current_question + 1]
return {
"message": f"Alright, let's move on to the next question: {next_question}",
"is_question": True,
"current_question": current_question + 1,
"flow": "skip"
}
else:
return {
"message": "Great! We've covered all the questions. Let me create a summary of what we've discussed.",
"is_question": False,
"module_complete": True,
"flow": "complete"
}
async def _handle_potential_answer(
self,
db: AsyncSession,
memory: ConversationMemory,
user_message: str,
module_questions: List[str],
context: dict,
cross_memory: CrossModuleMemory
) -> Dict[str, Any]:
"""Handle potential answers to current questions."""
current_state = memory.conversation_state
current_question = current_state.get("current_question", 0)
if current_question >= len(module_questions):
# All questions answered, generate summary
return await self._generate_completion_summary(db, memory, context, cross_memory)
# Validate answer using AI
validation_prompt = f"""
Current question: "{module_questions[current_question]}"
User's response: "{user_message}"
Determine if this is a valid answer to the question. Consider:
1. Does it address the question?
2. Is it relevant and meaningful?
3. Does it provide useful information?
Respond with "VALID" or "INVALID" and a brief explanation.
"""
validation_result = await self.ai_service.generate_content(
prompt=validation_prompt,
temperature=0.3
)
is_valid = "VALID" in validation_result.upper()
if is_valid:
# Valid answer, move to next question
next_question_idx = current_question + 1
if next_question_idx >= len(module_questions):
# Last question answered
return await self._generate_completion_summary(db, memory, context, cross_memory)
else:
# Generate natural transition
transition_prompt = f"""
The user just answered: "{user_message}"
Next question: "{module_questions[next_question_idx]}"
Create a natural, conversational transition to the next question.
Acknowledge their answer briefly and smoothly introduce the next question.
"""
transition = await self.ai_service.generate_content(
prompt=transition_prompt,
temperature=0.7
)
return {
"message": transition,
"is_question": True,
"current_question": next_question_idx,
"flow": "transition"
}
else:
# Invalid answer, ask for clarification
clarification_prompt = f"""
The user's response "{user_message}" doesn't seem to fully answer the question: "{module_questions[current_question]}"
Create a friendly, helpful clarification request that:
1. Acknowledges their response
2. Explains what kind of information is needed
3. Encourages them to provide more details
"""
clarification = await self.ai_service.generate_content(
prompt=clarification_prompt,
temperature=0.7
)
return {
"message": clarification,
"is_question": True,
"current_question": current_question,
"flow": "clarification"
}
async def _generate_completion_summary(
self,
db: AsyncSession,
memory: ConversationMemory,
context: dict,
cross_memory: CrossModuleMemory
) -> Dict[str, Any]:
"""Generate completion summary."""
summary_prompt = f"""
Generate a comprehensive summary of the conversation for {memory.module_id}.
Conversation context: {context['context']}
Business context: {cross_memory.business_context}
Create a detailed, professional summary that captures all key points discussed.
"""
summary = await self.ai_service.generate_content(
prompt=summary_prompt,
temperature=0.5
)
return {
"message": f"Perfect! Here's a summary of what we've discussed:\n\n{summary}",
"is_question": False,
"module_complete": True,
"summary": summary,
"flow": "complete"
}
def _get_module_questions(self, module_id: str) -> List[str]:
"""Get questions for a module from the chatbot service."""
# This should be implemented to get questions from your module configuration
# For now, returning empty list - this will be passed from the chatbot service
return [] |