Spaces:
Sleeping
Sleeping
File size: 27,274 Bytes
e7abfef 621ab56 e7abfef 621ab56 26bd8d5 621ab56 e7abfef 621ab56 e7abfef 621ab56 26bd8d5 621ab56 26bd8d5 e7abfef 621ab56 26bd8d5 621ab56 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 896d096 e7abfef 26bd8d5 e7abfef 26bd8d5 e7abfef bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 26bd8d5 bfeb103 e7abfef 26bd8d5 7d1a11c 26bd8d5 e7abfef 26bd8d5 e7abfef 26bd8d5 e7abfef 621ab56 bfeb103 621ab56 bfeb103 e7abfef 621ab56 bfeb103 621ab56 e7abfef bfeb103 e7abfef bfeb103 97b32cb e7abfef bfeb103 e7abfef 7d1a11c e7abfef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
"""
LangChain-based Conversation Service for Advanced AI Chatbot
Implements conversation memory, RAG retrieval, and context-aware responses
"""
import logging
import json
import asyncio
from typing import Dict, List, Optional, Any, Tuple
from datetime import datetime, timezone
from pathlib import Path
import os
from langchain.memory import ConversationBufferWindowMemory, ConversationSummaryMemory
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.chat_models import ChatOpenAI
from langchain.schema import Document
from langchain.prompts import PromptTemplate
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, and_
from sqlalchemy.orm import selectinload
from models import ConversationMemory, CrossModuleMemory, ConversationMessage, GPTModeSession
from services.ai_service_manager import AIServiceManager
from config import settings
logger = logging.getLogger(__name__)
class LangChainConversationService:
"""Advanced conversation service with LangChain memory and RAG capabilities."""
def __init__(self):
self.ai_service = AIServiceManager()
self.embeddings = OpenAIEmbeddings(openai_api_key=settings.openai_api_key)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
self.vector_stores = {} # Cache for module-specific vector stores
self.conversation_chains = {} # Cache for conversation chains
async def load_module_content(self, module_id: str) -> List[Document]:
"""Load and process content for a specific GPT module."""
try:
# Define the path to GPT modules
gpt_modules_path = Path("GPT FINAL FLOW")
# Map module IDs to folder names
module_mapping = {
"offer_clarifier": "1_The Offer Clarifier GPT",
"avatar_creator": "2_Avatar Creator and Empathy Map GPT",
"before_state": "3_Before State Research GPT",
"after_state": "4_After State Research GPT",
"avatar_validator": "5_Avatar Validator GPT",
"trigger_gpt": "6_TriggerGPT",
"epo_builder": "7_EPO Builder GPT - Copy",
"scamper_synthesizer": "8_SCAMPER Synthesizer",
"wildcard_idea": "9_Wildcard Idea Bot",
"concept_crafter": "10_Concept Crafter GPT",
"hook_headline": "11_Hook & Headline GPT",
"campaign_concept": "12_Campaign Concept Generator GPT",
"ideation_injection": "13_Ideation Injection Bot"
}
# Get the folder name for this module
folder_name = module_mapping.get(module_id, module_id)
module_path = gpt_modules_path / folder_name
if not module_path.exists():
logger.warning(f"Module path not found: {module_path}")
return []
documents = []
# Load system prompts - prioritize conversational versions
system_prompt_path = module_path / "System Prompt"
if system_prompt_path.exists():
# First, look for conversational prompts
conversational_prompts = list(system_prompt_path.glob("*Conversational*.txt"))
regular_prompts = list(system_prompt_path.glob("*.txt"))
# Filter out conversational prompts from regular prompts to avoid duplication
if conversational_prompts:
# Use only conversational prompts
prompt_files = conversational_prompts
logger.info(f"Using conversational prompts for module {module_id}")
else:
# Use regular prompts only
prompt_files = regular_prompts
logger.info(f"Using regular prompts for module {module_id}")
for file_path in prompt_files:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
documents.append(Document(
page_content=content,
metadata={
"source": str(file_path),
"type": "system_prompt",
"module": module_id,
"is_conversational": "Conversational" in file_path.name
}
))
# Load RAG content
rag_path = module_path / "RAG"
if rag_path.exists():
for file_path in rag_path.glob("*.txt"):
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
documents.append(Document(
page_content=content,
metadata={
"source": str(file_path),
"type": "rag_content",
"module": module_id
}
))
# Load output templates
output_path = module_path / "Output template"
if output_path.exists():
for file_path in output_path.glob("*.txt"):
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
documents.append(Document(
page_content=content,
metadata={
"source": str(file_path),
"type": "output_template",
"module": module_id
}
))
logger.info(f"Loaded {len(documents)} documents for module {module_id}")
return documents
except Exception as e:
logger.error(f"Error loading module content for {module_id}: {e}")
return []
async def create_vector_store(self, module_id: str) -> FAISS:
"""Create or retrieve vector store for a module."""
if module_id in self.vector_stores:
return self.vector_stores[module_id]
try:
# Load documents for this module
documents = await self.load_module_content(module_id)
if not documents:
logger.warning(f"No documents found for module {module_id}")
return None
# Split documents into chunks
texts = self.text_splitter.split_documents(documents)
# Create vector store
vector_store = FAISS.from_documents(texts, self.embeddings)
# Cache the vector store
self.vector_stores[module_id] = vector_store
logger.info(f"Created vector store for module {module_id} with {len(texts)} chunks")
return vector_store
except Exception as e:
logger.error(f"Error creating vector store for {module_id}: {e}")
return None
async def create_conversation_chain(self, module_id: str, memory_id: str) -> ConversationalRetrievalChain:
"""Create a conversation chain with memory and RAG."""
try:
# Get or create vector store
vector_store = await self.create_vector_store(module_id)
if not vector_store:
logger.error(f"Could not create vector store for module {module_id}")
return None
# Create memory
memory = ConversationBufferWindowMemory(
memory_key="chat_history",
return_messages=True,
k=10 # Keep last 10 exchanges
)
# Create LLM
llm = ChatOpenAI(
model_name=settings.openai_model,
temperature=0.7,
openai_api_key=settings.openai_api_key
)
# Create custom conversational prompt template
conversational_prompt = PromptTemplate(
input_variables=["context", "question", "chat_history"],
template="""You are a friendly, conversational business assistant helping users clarify their product or service offers. Your goal is to have a natural, flowing conversation that feels like talking to a knowledgeable business consultant.
## π― YOUR ROLE
- Be warm, engaging, and conversational
- Ask questions naturally as part of the conversation flow
- Remember what the user has shared and build on it
- Help them think through their business offering step by step
- Make them feel comfortable sharing their ideas
## π¬ CONVERSATION STYLE
- Use a friendly, casual tone
- Ask follow-up questions to dig deeper
- Acknowledge their responses and show understanding
- Share insights and observations about their business
- Guide them toward clarity without being pushy
## π INFORMATION TO GATHER (through natural conversation)
As you chat, naturally gather these details about their offer:
1. Product/Service Name - What do they call it?
2. Core Transformation - What's the main result customers get?
3. Key Features - What's included? What makes it valuable?
4. Delivery Method - How do customers access it?
5. Format - Is it a course, service, software, membership, etc.?
6. Pricing - What's the cost structure?
7. Unique Value - What makes it different from alternatives?
8. Target Audience - Who is this perfect for?
9. Problems Solved - What pain points does it address?
## π CONVERSATION FLOW
1. Start with a warm greeting and ask about their business
2. Listen and respond naturally to what they share
3. Ask thoughtful follow-up questions to get more details
4. Acknowledge their insights and help them think deeper
5. Guide them toward clarity on each aspect of their offer
6. Summarize what you've learned and ask for confirmation
7. Offer to create a summary when they're ready
## π― CONVERSATION TECHNIQUES
- "Tell me more about..." - Encourage elaboration
- "That's interesting! How does that work?" - Show curiosity
- "So if I understand correctly..." - Confirm understanding
- "What made you decide to..." - Explore their thinking
- "How do your customers typically..." - Understand their market
- "What would you say is the biggest..." - Identify key points
## π WHEN READY TO SUMMARIZE
When you have enough information, say something like:
"Great! I feel like I have a good understanding of your offer now. Would you like me to create a summary of everything we've discussed? This will help you see how clear and compelling your offer is, and you can make any adjustments before we move forward."
## π« AVOID
- Rigid question lists
- Formal business language
- Pushing for specific answers
- Making assumptions about their business
- Rushing through the conversation
## β
REMEMBER
Your goal is to help them think through their offer in a natural, comfortable way. The conversation should feel like talking to a smart friend who really understands business and wants to help them succeed.
## CONVERSATION HISTORY
{chat_history}
## USER'S QUESTION
{question}
Please respond in a warm, conversational way that helps them think through their business offering naturally. If you have relevant context information, use it to provide better guidance."""
)
# Create conversation chain with custom prompt and explicit output key
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 3}
),
memory=memory,
return_source_documents=True,
verbose=True,
output_key="answer",
combine_docs_chain_kwargs={"prompt": conversational_prompt}
)
# Cache the chain
chain_key = f"{module_id}_{memory_id}"
self.conversation_chains[chain_key] = chain
logger.info(f"Created conversation chain for {module_id}")
return chain
except Exception as e:
logger.error(f"Error creating conversation chain for {module_id}: {e}")
return None
async def get_conversation_context(self, db: AsyncSession, memory_id: str) -> Dict[str, Any]:
"""Get conversation context from database."""
try:
# Get conversation memory
memory_query = select(ConversationMemory).where(
ConversationMemory.id == memory_id
)
memory_result = await db.execute(memory_query)
memory = memory_result.scalar_one_or_none()
if not memory:
return {"history": [], "summary": "", "context": {}}
# Get recent messages
messages_query = select(ConversationMessage).where(
ConversationMessage.conversation_memory_id == memory_id
).order_by(ConversationMessage.created_at.desc()).limit(10)
messages_result = await db.execute(messages_query)
messages = messages_result.scalars().all()
# Format conversation history
history = []
for msg in reversed(messages): # Reverse to get chronological order
history.append({
"role": msg.role,
"content": msg.content,
"timestamp": msg.created_at.isoformat()
})
return {
"history": history,
"summary": memory.context_summary,
"context": memory.conversation_state,
"user_profile": memory.user_profile
}
except Exception as e:
logger.error(f"Error getting conversation context: {e}")
return {"history": [], "summary": "", "context": {}}
async def process_message_with_langchain(
self,
db: AsyncSession,
project_id: str,
session_id: str,
module_id: str,
user_message: str,
user_id: str # Add user_id parameter
) -> Dict[str, Any]:
"""Process a message using LangChain with memory and RAG."""
try:
# Get or create conversation memory for this user
memory_query = select(ConversationMemory).where(
and_(
ConversationMemory.project_id == project_id,
ConversationMemory.session_id == session_id,
ConversationMemory.module_id == module_id,
ConversationMemory.user_id == user_id # Add user filter
)
)
memory_result = await db.execute(memory_query)
memory = memory_result.scalar_one_or_none()
if not memory:
# Create new memory for this user
memory = ConversationMemory(
project_id=project_id,
session_id=session_id,
module_id=module_id,
user_id=user_id # Add user_id
)
db.add(memory)
await db.commit()
await db.refresh(memory)
# Get conversation history
messages_query = select(ConversationMessage).where(
ConversationMessage.conversation_memory_id == memory.id
).order_by(ConversationMessage.created_at)
messages_result = await db.execute(messages_query)
messages = messages_result.scalars().all()
# Format conversation history
chat_history = []
for msg in messages:
chat_history.append(f"{msg.role.title()}: {msg.content}")
# Create a structured conversational prompt with information tracking
conversation_prompt = f"""You are a friendly, conversational business assistant helping users clarify their product or service offers. Your goal is to have a natural, flowing conversation while systematically gathering key information.
## π― YOUR ROLE
- Be warm, engaging, and conversational
- Ask questions naturally as part of the conversation flow
- Remember what the user has shared and build on it
- Systematically gather information without being rigid
- Make them feel comfortable sharing their ideas
## π REQUIRED INFORMATION TO GATHER
Track these 9 key points throughout the conversation:
1. β
Product/Service Name - What do they call it?
2. β
Core Transformation - What's the main result customers get?
3. β
Key Features - What's included? What makes it valuable?
4. β
Delivery Method - How do customers access it?
5. β
Format - Is it a course, service, software, membership, etc.?
6. β
Pricing - What's the cost structure?
7. β
Unique Value - What makes it different from alternatives?
8. β
Target Audience - Who is this perfect for?
9. β
Problems Solved - What pain points does it address?
## π CONVERSATION STRATEGY
1. **Acknowledge & Build:** Always acknowledge what they've shared and build on it
2. **Ask One Thing at a Time:** Focus on one missing piece of information per response
3. **Natural Transitions:** Use their answers to naturally transition to the next topic
4. **Avoid Repetition:** Don't ask about information they've already provided
5. **Progress Tracking:** Keep track of what information you have and what's still needed
## π¬ CONVERSATION TECHNIQUES
- "That's great! I can see how [feature] helps with [benefit]..."
- "So if I understand correctly, [summarize their point]..."
- "That's interesting! How does [specific aspect] work in practice?"
- "What made you decide to focus on [specific feature/approach]?"
- "How do your customers typically use [specific feature]?"
- "What would you say is the biggest challenge [target audience] faces?"
## π COMPLETION DETECTION
When you have gathered information for at least 7 out of 9 key points, say:
"Excellent! I feel like I have a comprehensive understanding of [Product Name] now. Would you like me to create a summary of everything we've discussed? This will help you see how clear and compelling your offer is, and you can make any adjustments before we move forward."
## π« AVOID
- Asking the same question twice
- Rigid question lists
- Formal business language
- Pushing for specific answers
- Making assumptions about their business
## β
REMEMBER
Your goal is to help them think through their offer naturally while ensuring you gather all the key information needed for a complete offer clarification.
## CONVERSATION HISTORY
{chr(10).join(chat_history) if chat_history else "No previous conversation."}
## USER'S QUESTION
{user_message}
Please respond in a warm, conversational way that helps them think through their business offering naturally. Focus on gathering missing information while building on what they've already shared."""
# Generate response using AI service directly
response = await self.ai_service.generate_content(
prompt=conversation_prompt,
max_tokens=500,
temperature=0.7
)
# Save message to database
user_msg = ConversationMessage(
conversation_memory_id=memory.id,
role="user",
content=user_message,
message_type="text"
)
db.add(user_msg)
# Save assistant response
assistant_msg = ConversationMessage(
conversation_memory_id=memory.id,
role="assistant",
content=response,
message_type="text",
context_data={
"module_id": module_id
}
)
db.add(assistant_msg)
# Update memory
memory.conversation_history = [
{"role": "user", "content": user_message},
{"role": "assistant", "content": response}
]
memory.last_updated = datetime.now(timezone.utc)
await db.commit()
# Check if conversation is complete
is_complete = self._check_conversation_complete(response, user_message)
return {
"success": True,
"message": response,
"sources": [],
"module_complete": is_complete,
"memory_id": memory.id
}
except Exception as e:
logger.error(f"Error processing message with LangChain: {e}")
return {
"success": False,
"message": "I encountered an error processing your message.",
"error": str(e)
}
def _check_conversation_complete(self, response: str, user_message: str) -> bool:
"""Check if the conversation is complete based on response content."""
# Check for conversational completion indicators
completion_indicators = [
"would you like me to create a summary",
"i feel like i have a comprehensive understanding",
"i feel like i have a good understanding",
"let me create a summary",
"here's a summary",
"summary of everything we've discussed",
"ready to create a summary",
"shall i summarize",
"would you like me to summarize",
"comprehensive understanding",
"excellent! i feel like i have"
]
response_lower = response.lower()
for indicator in completion_indicators:
if indicator in response_lower:
return True
# Also check if user is asking for summary
user_summary_requests = [
"create summary",
"generate summary",
"summarize",
"summary please",
"can you summarize",
"give me a summary",
"yes, create a summary",
"yes, summarize"
]
user_message_lower = user_message.lower()
for request in user_summary_requests:
if request in user_message_lower:
return True
return False
async def get_conversation_summary(self, db: AsyncSession, memory_id: str) -> str:
"""Generate a summary of the conversation."""
try:
# Get conversation memory
memory_query = select(ConversationMemory).where(
ConversationMemory.id == memory_id
)
memory_result = await db.execute(memory_query)
memory = memory_result.scalar_one_or_none()
if not memory:
return "No conversation found."
# Get all messages
messages_query = select(ConversationMessage).where(
ConversationMessage.conversation_memory_id == memory_id
).order_by(ConversationMessage.created_at)
messages_result = await db.execute(messages_query)
messages = messages_result.scalars().all()
# Create conversation text
conversation_text = ""
for msg in messages:
conversation_text += f"{msg.role.title()}: {msg.content}\n\n"
# Generate structured summary using OpenAI
summary_prompt = f"""
Please provide a comprehensive, structured summary of the following business conversation about their product/service offer. Organize it into clear sections:
## π OFFER CLARIFICATION SUMMARY
### π·οΈ Product/Service Name
[Extract the product/service name]
### π― Core Transformation/Outcome
[What is the main result customers get from this offer?]
### π Key Features
[List the main features and capabilities]
### π¦ Delivery Method
[How do customers access this product/service?]
### π Format
[What type of product/service is this? (software, course, service, etc.)]
### π° Pricing Structure
[What is the pricing model and cost structure?]
### β Unique Value Proposition
[What makes this different from alternatives?]
### π― Target Audience
[Who is this product/service perfect for?]
### π¨ Problems Solved
[What pain points does this address?]
### π‘ Key Insights
[Any additional insights or observations from the conversation]
### π Next Steps
[Suggestions for moving forward with this offer]
Conversation:
{conversation_text}
Please provide a detailed, professional summary following this structure:
"""
# Use the AI service to generate summary
summary_response = await self.ai_service.generate_content(
prompt=summary_prompt,
max_tokens=500
)
# Update memory with summary
memory.context_summary = summary_response
await db.commit()
return summary_response
except Exception as e:
logger.error(f"Error generating conversation summary: {e}")
return "Error generating summary."
async def clear_conversation_memory(self, db: AsyncSession, memory_id: str):
"""Clear conversation memory."""
try:
# Delete messages
await db.execute(
select(ConversationMessage).where(
ConversationMessage.conversation_memory_id == memory_id
).delete()
)
# Delete memory
await db.execute(
select(ConversationMemory).where(
ConversationMemory.id == memory_id
).delete()
)
await db.commit()
logger.info(f"Cleared conversation memory {memory_id}")
except Exception as e:
logger.error(f"Error clearing conversation memory: {e}") |