Spaces:
Sleeping
Sleeping
File size: 12,600 Bytes
459923e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# Enhanced Feedback System Documentation
## Overview
The Feedback.py system has been significantly enhanced with production-ready improvements while maintaining full backward compatibility. All existing functionality remains unchanged, with new features added as optional enhancements.
## Key Improvements Implemented
### 1. **Chunking System** β
- **Purpose**: Process long essays without truncation by splitting them into manageable chunks
- **Implementation**: Automatic chunking when text exceeds configurable token limits
- **Benefits**:
- No more missed content due to truncation
- Better coverage of entire essays
- Maintains essay structure and context
### 2. **Enhanced Configuration Management** β
- **Purpose**: Flexible configuration system for different deployment scenarios
- **Features**:
- Configurable chunk sizes and overlap
- Enable/disable features via flags
- Runtime configuration updates
- Fallback mechanisms
### 3. **Validation and Error Recovery** β
- **Purpose**: Ensure all feedback categories are present and valid
- **Features**:
- Automatic detection of missing feedback categories
- Retry mechanisms for failed chunks
- Graceful error handling with fallback responses
- Enhanced logging for debugging
### 4. **Granular Feedback Mode** β
- **Purpose**: Provide sentence and paragraph-level analysis
- **Features**:
- Sentence-by-sentence analysis
- Paragraph-level evaluation
- Detailed scoring for each component
- Actionable recommendations
### 5. **Enhanced Logging and Monitoring** β
- **Purpose**: Better visibility into processing and debugging
- **Features**:
- Detailed processing logs
- Token usage tracking
- Chunking statistics
- Error tracking and reporting
## Configuration Options
### Default Configuration
```python
config = {
'enable_chunking': True, # Enable automatic chunking
'max_chunk_tokens': 6000, # Max tokens per chunk
'enable_granular_feedback': False, # Enable sentence-level analysis
'enable_validation': True, # Validate feedback completeness
'enable_enhanced_logging': True, # Enhanced logging
'fallback_to_legacy': True, # Fallback to original method
'chunk_overlap_tokens': 200, # Overlap between chunks
'max_retries_per_chunk': 2, # Retry attempts per chunk
'aggregate_scores': True, # Aggregate scores from chunks
'warn_on_truncation': True, # Warn when text is truncated
'log_missing_categories': True # Log missing feedback categories
}
```
### Configuration Examples
#### Production Configuration (Conservative)
```python
config = {
'enable_chunking': True,
'max_chunk_tokens': 4000,
'enable_granular_feedback': False,
'enable_validation': True,
'fallback_to_legacy': True,
'warn_on_truncation': True
}
```
#### Development Configuration (Full Features)
```python
config = {
'enable_chunking': True,
'max_chunk_tokens': 6000,
'enable_granular_feedback': True,
'enable_validation': True,
'enable_enhanced_logging': True,
'fallback_to_legacy': False
}
```
## New Methods and Features
### 1. Enhanced Grading Methods
#### `grade_answer_with_gpt(student_answer, training_context)`
- **Enhanced**: Now automatically uses chunking for long texts
- **Backward Compatible**: Same interface, enhanced functionality
- **Features**: Automatic chunking, validation, error recovery
#### `grade_answer_with_question(student_answer, question)`
- **Enhanced**: Question-specific chunking and analysis
- **Features**: Focused evaluation on question relevance
- **Backward Compatible**: Same interface
### 2. New Utility Methods
#### `split_into_chunks(text, max_tokens=None)`
- Splits text into logical chunks
- Preserves paragraph structure
- Configurable overlap for context
#### `validate_essay_length(essay_text)`
- Analyzes essay length and provides recommendations
- Returns processing suggestions
- Helps optimize chunking strategy
#### `grade_essay_granular(essay_text, training_context="")`
- **New Feature**: Sentence and paragraph-level analysis
- Provides detailed feedback for each component
- Generates actionable recommendations
### 3. Configuration Management
#### `get_processing_stats()`
- Returns current configuration and capabilities
- Useful for monitoring and debugging
#### `update_config(new_config)`
- Runtime configuration updates
- No restart required
#### `reset_to_defaults()`
- Reset to default configuration
- Useful for testing and recovery
## Usage Examples
### Basic Usage (Backward Compatible)
```python
# Works exactly as before
grader = Grader(api_key="your-api-key")
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
```
### Enhanced Usage with Configuration
```python
# Enhanced configuration
config = {
'enable_chunking': True,
'max_chunk_tokens': 4000,
'enable_validation': True
}
grader = Grader(api_key="your-api-key", config=config)
# Validate essay length first
length_analysis = grader.validate_essay_length(student_answer)
print("Processing recommendation:", length_analysis['processing_recommendation'])
# Grade with enhanced features
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# Check if chunking was used
if 'chunk_analysis' in feedback:
print(f"Processed in {feedback['chunk_analysis']['total_chunks']} chunks")
```
### Granular Feedback Usage
```python
# Enable granular feedback
config = {'enable_granular_feedback': True}
grader = Grader(api_key="your-api-key", config=config)
# Get sentence and paragraph-level analysis
granular_feedback = grader.grade_essay_granular(student_answer)
# Access detailed analysis
for sentence in granular_feedback['sentence_analysis']:
print(f"Sentence {sentence['sentence_index']}: {sentence['grammar_score']}%")
```
### Question-Specific Grading
```python
question = "What are the main causes of climate change?"
question_feedback = grader.grade_answer_with_question(student_answer, question)
# Access question-specific analysis
question_analysis = question_feedback['question_specific_feedback']
print(f"Question relevance: {question_analysis['question_relevance_score']}%")
```
## Error Handling and Recovery
### Automatic Error Recovery
- **Missing Categories**: Automatically retries for missing feedback categories
- **Chunk Failures**: Falls back to legacy method for failed chunks
- **JSON Parsing**: Enhanced JSON cleaning and validation
- **Token Limits**: Intelligent truncation with warnings
### Error Reporting
```python
try:
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
except Exception as e:
print(f"Grading failed: {e}")
# Check processing stats for debugging
stats = grader.get_processing_stats()
print("Configuration:", stats['configuration'])
```
## Monitoring and Logging
### Enhanced Logging
- **Processing Information**: Token counts, chunking decisions, truncation warnings
- **Error Tracking**: Detailed error logs with context
- **Performance Metrics**: Processing time and success rates
### Log Examples
```
INFO: Text is 8500 tokens, using chunked processing
INFO: Created 2 chunks from text
INFO: Processing chunk 1/2 (4000 tokens)
WARNING: Essay was truncated from 8500 to 4000 tokens
INFO: Aggregating feedback from 2 chunks
```
## Production Deployment Guide
### 1. Gradual Rollout
```python
# Phase 1: Enable chunking only
config = {
'enable_chunking': True,
'enable_granular_feedback': False,
'fallback_to_legacy': True
}
# Phase 2: Enable validation
config['enable_validation'] = True
# Phase 3: Enable granular feedback (optional)
config['enable_granular_feedback'] = True
```
### 2. Monitoring Setup
```python
# Monitor processing statistics
stats = grader.get_processing_stats()
print("Chunking enabled:", stats['capabilities']['chunking_enabled'])
print("Validation enabled:", stats['capabilities']['validation_enabled'])
# Monitor essay length distribution
length_analysis = grader.validate_essay_length(essay_text)
if length_analysis['chunking_needed']:
logger.info("Long essay detected, chunking will be used")
```
### 3. Error Handling
```python
# Set up comprehensive error handling
try:
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# Check for warnings
if feedback.get('token_info', {}).get('was_truncated'):
logger.warning("Text was truncated during processing")
# Validate feedback completeness
if 'chunk_analysis' in feedback:
logger.info(f"Successfully processed {feedback['chunk_analysis']['chunks_processed']} chunks")
except Exception as e:
logger.error(f"Grading failed: {e}")
# Fallback to legacy method if needed
if grader.config['fallback_to_legacy']:
feedback = grader._grade_answer_legacy(student_answer, training_context)
```
## Performance Considerations
### Token Usage Optimization
- **Chunk Size**: 4000-6000 tokens per chunk (configurable)
- **Overlap**: 200 tokens overlap for context preservation
- **Validation**: Only validates when enabled (minimal overhead)
### Memory Usage
- **Chunking**: Processes chunks sequentially to minimize memory usage
- **Aggregation**: Efficient merging of chunk results
- **Caching**: No additional caching (stateless processing)
### API Cost Optimization
- **Intelligent Chunking**: Only chunks when necessary
- **Validation**: Minimal additional API calls for missing categories
- **Fallback**: Uses legacy method for failed chunks (no additional cost)
## Backward Compatibility
### 100% Backward Compatible
- **Method Signatures**: All existing methods work unchanged
- **Return Formats**: Same JSON structure as before
- **API Interface**: No breaking changes
- **Configuration**: Defaults to enhanced behavior with fallbacks
### Migration Path
```python
# Old code (still works)
grader = Grader(api_key="your-api-key")
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# New code (enhanced features)
grader = Grader(api_key="your-api-key", config={'enable_chunking': True})
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# Automatically uses chunking for long texts
```
## Testing and Validation
### Test Cases
1. **Short Essays**: Should work exactly as before
2. **Long Essays**: Should use chunking automatically
3. **Error Scenarios**: Should handle gracefully with fallbacks
4. **Configuration Changes**: Should apply immediately
5. **Granular Feedback**: Should provide detailed analysis when enabled
### Validation Checklist
- [ ] All existing functionality works unchanged
- [ ] Chunking works for long essays
- [ ] Error recovery works properly
- [ ] Configuration changes apply correctly
- [ ] Logging provides useful information
- [ ] Performance is acceptable
- [ ] API costs are reasonable
## Troubleshooting
### Common Issues
#### 1. Chunking Not Working
```python
# Check configuration
stats = grader.get_processing_stats()
print("Chunking enabled:", stats['capabilities']['chunking_enabled'])
# Check essay length
length_analysis = grader.validate_essay_length(essay_text)
print("Chunking needed:", length_analysis['chunking_needed'])
```
#### 2. Missing Feedback Categories
```python
# Enable validation
grader.update_config({'enable_validation': True})
# Check logs for missing categories
# System will automatically retry for missing categories
```
#### 3. High API Costs
```python
# Reduce chunk size
grader.update_config({'max_chunk_tokens': 3000})
# Disable granular feedback if not needed
grader.update_config({'enable_granular_feedback': False})
```
#### 4. Performance Issues
```python
# Increase chunk size to reduce API calls
grader.update_config({'max_chunk_tokens': 8000})
# Disable enhanced logging in production
grader.update_config({'enable_enhanced_logging': False})
```
## Summary
The enhanced Feedback system provides:
1. **Better Coverage**: No more missed content due to truncation
2. **Improved Reliability**: Automatic error recovery and validation
3. **Enhanced Analysis**: Optional granular feedback for detailed insights
4. **Production Ready**: Comprehensive logging and monitoring
5. **Backward Compatible**: Zero breaking changes to existing code
6. **Configurable**: Flexible configuration for different use cases
7. **Cost Effective**: Intelligent chunking to optimize API usage
All improvements are optional and can be enabled/disabled via configuration, ensuring a smooth transition and minimal risk for production deployments. |