File size: 18,084 Bytes
459923e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b5464
 
 
459923e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import streamlit as st
from OCR import OCR
from Feedback import Grader
from PDFFeedbackGenerator import PDFFeedbackGenerator
import matplotlib
from io import BytesIO
from streamlit.web.server.websocket_headers import _get_websocket_headers
import re
import time
from pdf2image import convert_from_path

matplotlib.use("Agg")  # Non-GUI backend for matplotlib

# Constants
LOGO_PATH = "cslogo.png"
TEMP_DIR = "temp"  # Changed from /tmp to relative path
POPPLER_PATH = os.path.join(os.path.dirname(__file__), "poppler", "bin")

# Create temp directory if it doesn't exist
os.makedirs(TEMP_DIR, exist_ok=True)

# Allow iframe embedding and add CORS headers
def custom_get_websocket_headers(*args, **kwargs):
    headers = _get_websocket_headers(*args, **kwargs)
    headers["X-Frame-Options"] = "ALLOWALL"
    headers["Access-Control-Allow-Origin"] = "*"
    headers["Access-Control-Allow-Methods"] = "GET, POST, OPTIONS"
    headers["Access-Control-Allow-Headers"] = "Content-Type"
    return headers

# Apply the override
import streamlit.web.server.websocket_headers
streamlit.web.server.websocket_headers._get_websocket_headers = custom_get_websocket_headers

# Google Cloud credentials
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "css-edge-e347b0ed2b9e.json"

# Initialize instances
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
    raise RuntimeError("OPENAI_API_KEY environment variable not set")
ocr = OCR()
grader = Grader(api_key=api_key)

# Main application logic
def main():
    st.sidebar.title("Navigation")
    choice = st.sidebar.radio("Steps", ["Upload File", "Generate Feedback"])

    if choice == "Upload File":
        st.sidebar.markdown("""
        ### Instructions:
        - Prepare your response
        - Save as PDF/PNG/JPG
        - Upload using the uploader
        - Verify extracted text
        """)

        st.title("Upload File for Processing")
        st.header("Step 1: Upload File")
        
        # Start timer for extraction
        if 'extraction_start_time' not in st.session_state:
            st.session_state['extraction_start_time'] = time.time()
        uploaded_files = st.file_uploader(
            "Upload up to 15 PDF or Image Files", 
            type=["pdf", "png", "jpg", "jpeg", "bmp", "gif", "tiff"], 
            accept_multiple_files=True
        )
        if uploaded_files:
            if len(uploaded_files) > 15:
                st.error("You can upload a maximum of 15 files at once.")
            else:
                extracted_texts = []
                for uploaded_file in uploaded_files:
                    try:
                        file_path = os.path.join(TEMP_DIR, uploaded_file.name)
                        with open(file_path, "wb") as f:
                            f.write(uploaded_file.getbuffer())
                        st.success(f"File {uploaded_file.name} uploaded successfully!")
                        is_handwritten = st.radio(
                            f"File type for {uploaded_file.name}:",
                            ("Computer-Written", "Handwritten"),
                            index=0,
                            key=uploaded_file.name
                        )
                        if uploaded_file.name.lower().endswith(".pdf"):
                            extracted_text, accuracy_metrics = ocr.process_pdf_file_with_vision(file_path)
                        else:
                            extracted_text, accuracy_metrics = ocr.process_image_with_vision(file_path)
                        if accuracy_metrics.get("overall_accuracy", 0.0) < 0.6:
                            st.warning(f"OCR accuracy for {uploaded_file.name} is below 60%. Please upload a clearer image or higher quality file.")
                            continue
                        if not extracted_text.strip():
                            st.warning(f"No text extracted from {uploaded_file.name}")
                        else:
                            extracted_texts.append(extracted_text)
                    except Exception as e:
                        st.error(f"Error processing file {uploaded_file.name}: {str(e)}")
                        continue
                if not extracted_texts:
                    st.error("No files with acceptable OCR accuracy. Please upload clearer images or higher quality files.")
                else:
                    combined_text = "\n\n".join(extracted_texts)
                    st.warning("Verify and edit the combined extracted text from all files below:")
                    user_text = st.text_area(
                        "Combined Extracted Text:",
                        combined_text,
                        height=400,
                        key="combined_extracted_text"
                    )
                    if st.button("Confirm All Text"):
                        if user_text.strip():
                            st.session_state["extracted_text"] = user_text
                            st.session_state['extraction_end_time'] = time.time()
                            elapsed_extraction = st.session_state['extraction_end_time'] - st.session_state['extraction_start_time']
                            st.success(f"All text verified and ready for feedback! (Extraction Time: {elapsed_extraction:.2f} seconds)")
                        else:
                            st.error("Text cannot be empty")

    elif choice == "Generate Feedback":
        st.sidebar.markdown("""
        ### Instructions:
        - Review extracted text
        - Enter your name
        - Download report
        """)

        st.title("Feedback and Grading Tool")
        st.header("Step 2: Generate Feedback")
        
        extracted_text = st.session_state.get("extracted_text", "")
        if not extracted_text.strip():
            st.error("No text to process. Please go back and upload files with better quality or confirm the extracted text.")
            return

        try:
            st.write("Generating feedback...")
            feedback_start_time = time.time()
            structured_feedback = grader.grade_answer_with_gpt(
                extracted_text,
                "CSS FPSC Guidelines Context"
            )
            feedback_end_time = time.time()
            elapsed_feedback = feedback_end_time - feedback_start_time
            st.success(f"Feedback generated! (Feedback Generation Time: {elapsed_feedback:.2f} seconds)")
            
            # Generate rephrased text
            rephrased_analysis = grader.rephrase_text_with_gpt(extracted_text)
            structured_feedback["rephrased_analysis"] = rephrased_analysis
            
            if not structured_feedback or "sections" not in structured_feedback:
                st.error("Error: Invalid feedback format received. Please try again.")
                return

            st.success("Feedback generated!")

            # Display feedback in web view
            st.write("### Detailed Feedback")
            
            # Add custom CSS for improved text alignment and presentation
            st.markdown("""
                <style>
                .highlight {
                    background-color: rgba(255, 255, 0, 0.3);
                    padding: 0 2px;
                }
                .feedback-section {
                    margin: 20px 0;
                    padding: 18px 20px;
                    border-radius: 10px;
                    background-color: #f8f9fa;
                    border: 1.5px solid #e0e0e0;
                    box-shadow: 0 2px 8px rgba(44,62,80,0.06);
                }
                .feedback-header {
                    font-size: 1.1em;
                    font-weight: bold;
                    margin: 15px 0 8px 0;
                    color: #2c3e50;
                    padding-bottom: 3px;
                    border-bottom: 1px solid #e0e0e0;
                }
                .feedback-content {
                    margin-left: 20px;
                    line-height: 1.6;
                    text-align: justify;
                }
                .feedback-item {
                    margin: 8px 0;
                    padding: 5px 0;
                }
                .quote-text {
                    font-style: italic;
                    color: #34495e;
                    margin: 10px 0;
                    padding: 10px;
                    border-left: 3px solid #3498db;
                    background-color: #f1f8ff;
                }
                .section-title {
                    font-size: 1.4em;
                    color: #2c3e50;
                    margin: 15px 0 18px 0;
                    padding-bottom: 5px;
                    border-bottom: 2px solid #3498db;
                }
                .error-type {
                    color: #e74c3c;
                    font-weight: bold;
                }
                .correction {
                    color: #27ae60;
                    font-weight: bold;
                }
                .explanation {
                    color: #7f8c8d;
                    font-style: italic;
                }
                .critical-area {
                    color: #e67e22;
                    font-weight: bold;
                }
                .error-frequency {
                    margin: 10px 0;
                    padding: 10px;
                    background-color: #fff;
                    border-radius: 5px;
                    border: 1px solid #e0e0e0;
                }
                .score-impact {
                    margin: 10px 0;
                    padding: 10px;
                    background-color: #f8f9fa;
                    border-radius: 5px;
                    border-left: 3px solid #3498db;
                }
                </style>
            """, unsafe_allow_html=True)
            
            # Essay Structure feedback UI (with explanations for failed criteria)
            essay_structure_feedback = structured_feedback.get('essay_structure', {})
            st.markdown("<h4 style='margin-bottom:0.5em;'>Essay Structure</h4>", unsafe_allow_html=True)
            if not isinstance(essay_structure_feedback, dict):
                st.warning(f"Essay structure feedback is not a dict: {essay_structure_feedback}")
            else:
                for section, criteria in essay_structure_feedback.items():
                    with st.expander(section, expanded=False):
                        if not isinstance(criteria, dict):
                            st.warning(f"Criteria for section '{section}' is not a dict: {criteria}")
                            continue
                        for crit, result in criteria.items():
                            if not isinstance(result, dict):
                                st.warning(f"Result for criterion '{crit}' in section '{section}' is not a dict: {result}")
                                continue
                            passed = result.get('value', False)
                            explanation = result.get('explanation', '')
                            icon = 'βœ…' if passed else '❌'
                            color = '#27ae60' if passed else '#e74c3c'
                            if not passed and explanation:
                                st.markdown(f"<div style='margin-bottom:8px;'><b>β€’ {crit}</b> <span style='color:{color};font-size:1.2em;'>{icon}</span> <span style='background:#f8d7da;color:#c0392b;padding:4px 10px;border-radius:8px;margin-left:8px;'>{explanation}</span></div>", unsafe_allow_html=True)
                            else:
                                st.markdown(f"<div style='margin-bottom:8px;'><b>β€’ {crit}</b> <span style='color:{color};font-size:1.2em;'>{icon}</span></div>", unsafe_allow_html=True)

            # Display AI Evaluation & Score Section
            st.write("### AI Evaluation & Score")
            for section in structured_feedback["sections"]:
                score = section.get("score", 0)
                issues = section.get("issues", [])
                num_issues = len(issues)
                section_name = section.get("name", "")
                color = {
                    "Grammar & Punctuation": "#f8d7da",
                    "Tone & Formality": "#ffe5b4",
                    "Sentence Clarity & Structure": "#d6eaff",
                    "Vocabulary Suggestions": "#d4f8e8"
                }.get(section_name, "#f0f0f0")
                with st.container():
                    st.markdown(f"<div style='background:{color};border-radius:12px;padding:18px 20px;margin-bottom:18px;box-shadow:0 2px 8px rgba(44,62,80,0.06);'>", unsafe_allow_html=True)
                    cols = st.columns([0.7, 0.3])
                    with cols[0]:
                        st.markdown(f"<b style='font-size:1.1em'>{section_name}</b>", unsafe_allow_html=True)
                    with cols[1]:
                        st.markdown(f"<div style='float:right;'><span style='font-size:1.2em;font-weight:bold;'>{score}%</span></div>", unsafe_allow_html=True)
                    st.markdown(f"<div style='margin-top:8px;margin-bottom:8px;'><span style='background:#fff3f3;border-radius:8px;padding:4px 12px;color:#c0392b;font-weight:500;'>{num_issues} Issue{'s' if num_issues!=1 else ''}</span></div>", unsafe_allow_html=True)
                    with st.expander("Show Issues" if num_issues else "No Issues", expanded=False):
                        if num_issues == 0:
                            st.write("No issues found in this category.")
                        else:
                            for idx, issue in enumerate(issues, 1):
                                before = issue.get("before", "")
                                after = issue.get("after", "")
                                st.markdown(f"<div style='margin-bottom:12px;'><span style='color:#e74c3c;font-weight:bold;'>Before:</span> {before}<br><span style='color:#27ae60;font-weight:bold;'>After:</span> {after}</div>", unsafe_allow_html=True)
                    st.markdown("</div>", unsafe_allow_html=True)

            st.write("---")

            # Display Overall Scoring
            overall_score = structured_feedback.get("overall_score", 40)
            st.markdown("<h4 style='margin-bottom:0.5em;'>Overall Scoring</h4>", unsafe_allow_html=True)
            st.markdown(f"""
                <div style='background:#fff;border:2px solid #2986f5;border-radius:12px;padding:18px 0 18px 0;margin-bottom:18px;display:flex;align-items:center;justify-content:center;width:340px;'>
                    <div style='display:flex;align-items:center;justify-content:center;width:100%;'>
                        <div style='position:relative;width:80px;height:80px;'>
                            <svg width='80' height='80'>
                                <circle cx='40' cy='40' r='34' stroke='#e0e0e0' stroke-width='8' fill='none'/>
                                <circle cx='40' cy='40' r='34' stroke='#2986f5' stroke-width='8' fill='none' stroke-dasharray='213.6' stroke-dashoffset='{213.6 - (overall_score/100)*213.6}' stroke-linecap='round' transform='rotate(-90 40 40)'/>
                            </svg>
                            <div style='position:absolute;top:0;left:0;width:80px;height:80px;display:flex;align-items:center;justify-content:center;font-size:1.4em;font-weight:bold;color:#2986f5;'>{overall_score}%</div>
                        </div>
                        <div style='margin-left:24px;font-size:1.1em;font-weight:500;color:#222;'>Overall Essay Evaluation</div>
                    </div>
                </div>
            """, unsafe_allow_html=True)

            # PDF Generation part
            user_name = st.text_input("Enter your name:")
            if user_name:
                try:
                    pdf_buffer_feedback = BytesIO()
                    pdf_buffer_rephrased = BytesIO()
                    pdf_generator_feedback = PDFFeedbackGenerator(
                        output_path=pdf_buffer_feedback,
                        logo_path=LOGO_PATH
                    )
                    pdf_generator_rephrased = PDFFeedbackGenerator(
                        output_path=pdf_buffer_rephrased,
                        logo_path=LOGO_PATH
                    )
                    # Feedback PDF (no rephrased text)
                    pdf_generator_feedback.create_feedback_pdf(
                        user_name,
                        structured_feedback
                    )
                    pdf_buffer_feedback.seek(0)
                    # Rephrased Text PDF
                    pdf_generator_rephrased.create_rephrased_pdf(
                        user_name,
                        rephrased_analysis
                    )
                    pdf_buffer_rephrased.seek(0)
                    col1, col2 = st.columns(2)
                    with col1:
                        st.download_button(
                            label="Download Feedback Report (PDF)",
                            data=pdf_buffer_feedback,
                            file_name="feedback_report.pdf",
                            mime="application/pdf",
                            on_click=lambda: st.session_state.update({"feedback_downloaded": True}),
                        )
                    with col2:
                        st.download_button(
                            label="Download Rephrased Text Report (PDF)",
                            data=pdf_buffer_rephrased,
                            file_name="rephrased_text_report.pdf",
                            mime="application/pdf",
                        )
                    st.success("Reports ready for download!")
                except Exception as e:
                    st.error(f"Error generating PDF: {str(e)}")
            else:
                st.info("πŸ‘‰ Enter your name to generate the detailed reports")
        except Exception as e:
            st.error(f"Error generating feedback: {str(e)}")
            print(f"Feedback Generation Error: {str(e)}")

if __name__ == "__main__":
    main()