newtestingdanish / Feedback.py
aghaai's picture
Updated files
1e6c9c5
import logging
logger = logging.getLogger(__name__)
logger.info("Importing Feedback.py...")
import openai
from docx import Document
import json
import re
import os
import tiktoken
from typing import List, Dict, Tuple, Optional, Any
import unicodedata
class Grader:
def __init__(self, api_key, config: Optional[Dict[str, Any]] = None):
logger.info("Initializing Grader...")
self.api_key = api_key
openai.api_key = self.api_key
try:
self.client = openai.OpenAI(api_key=self.api_key)
except AttributeError:
self.client = openai
try:
self.encoding = tiktoken.encoding_for_model("gpt-4o")
logger.info("Successfully initialized tiktoken encoding")
except Exception as e:
logger.warning(f"Failed to initialize tiktoken: {e}")
self.encoding = None
# Fixed config, no runtime update
self.config = {
'enable_validation': True,
'enable_enhanced_logging': True,
'fallback_to_legacy': True,
'aggregate_scores': True,
'log_missing_categories': True
}
logger.info(f"Grader initialized with config: {self.config}")
def count_tokens(self, text):
if not self.encoding:
return len(text) // 4
try:
return len(self.encoding.encode(text))
except Exception as e:
logger.warning(f"Error counting tokens: {e}")
return len(text) // 4
def process_full_text(self, text):
if not text:
return text, 0, False
# Store original text for comparison
original_text = text
# More conservative character filtering - only remove truly problematic control characters
# Keep more Unicode characters that might be meaningful
text = ''.join(char for char in text if (
unicodedata.category(char)[0] != 'C' or # Keep control chars
char in '\n\r\t' or # Keep newlines, returns, tabs
unicodedata.category(char) in ['Cc', 'Cf', 'Cs'] # Only remove specific control categories
))
# Normalize Unicode but be more careful
text = unicodedata.normalize('NFKC', text)
# More selective character replacements - only replace if they cause issues
replacements = {
'\u201c': '"', # Left double quotation mark
'\u201d': '"', # Right double quotation mark
'\u2018': "'", # Left single quotation mark
'\u2019': "'", # Right single quotation mark
'\u2013': '-', # En dash
'\u2014': '--', # Em dash (replace with two dashes)
'\u2022': '•', # Bullet
'\u00a0': ' ', # Non-breaking space
'\u2026': '...', # Horizontal ellipsis
}
for old_char, new_char in replacements.items():
text = text.replace(old_char, new_char)
# Log if significant changes were made
if len(text) != len(original_text):
logger.info(f"Text processing: {len(original_text)} -> {len(text)} characters")
if len(text) < len(original_text) * 0.95: # If more than 5% was removed
logger.warning(f"Significant text reduction detected: {len(original_text)} -> {len(text)} characters")
token_count = self.count_tokens(text)
logger.info(f"Full text token count: {token_count} - NO TRUNCATION")
return text, token_count, False
def read_file(self, file_path):
logger.info(f"Reading file: {file_path}")
if file_path.endswith('.txt'):
with open(file_path, 'r', encoding='utf-8') as file:
return file.read().strip()
elif file_path.endswith('.docx'):
doc = Document(file_path)
return '\n'.join([para.text for para in doc.paragraphs]).strip()
else:
raise ValueError("Unsupported file format. Please use .txt or .docx files.")
def extract_json_from_text(self, text):
try:
return json.loads(text)
except json.JSONDecodeError as e:
logger.warning(f"Initial JSON parsing failed: {str(e)}")
logger.info(f"Raw response text: {text[:500]}...") # Log first 500 chars for debugging
start_idx = text.find('{')
end_idx = text.rfind('}')
if start_idx == -1 or end_idx == -1:
logger.error("No JSON object markers found in response")
raise ValueError("No valid JSON object found in the response")
json_str = text[start_idx:end_idx + 1]
logger.info(f"Extracted JSON string: {json_str[:200]}...") # Log first 200 chars
# Remove markdown formatting
json_str = json_str.replace('```json', '').replace('```', '')
# Remove control characters except newlines, returns, tabs
json_str = ''.join(char for char in json_str if (
unicodedata.category(char)[0] != 'C' or
char in '\n\r\t' or
unicodedata.category(char) in ['Cc', 'Cf', 'Cs']
))
# Normalize Unicode
json_str = unicodedata.normalize('NFKC', json_str)
# Replace common problematic characters
replacements = {
'\u201c': '"', # Left double quotation mark
'\u201d': '"', # Right double quotation mark
'\u2018': "'", # Left single quotation mark
'\u2019': "'", # Right single quotation mark
'\u2013': '-', # En dash
'\u2014': '--', # Em dash
'\u2022': '•', # Bullet
'\u00a0': ' ', # Non-breaking space
'\u2026': '...', # Horizontal ellipsis
}
for old_char, new_char in replacements.items():
json_str = json_str.replace(old_char, new_char)
# Clean up whitespace and formatting
json_str = re.sub(r'[\r\n\t]+', ' ', json_str)
json_str = re.sub(r'\s+', ' ', json_str)
# Remove trailing commas before closing brackets/braces
json_str = re.sub(r',\s*([}\]])', r'\1', json_str)
# Ensure property names are quoted
json_str = re.sub(r'([{,])\s*([a-zA-Z_][a-zA-Z0-9_]*)\s*:', r'\1"\2":', json_str)
# Handle escaped quotes properly
json_str = json_str.replace('\\"', '___ESCAPED_QUOTE___')
json_str = re.sub(r'(?<!\\)\'', '"', json_str)
json_str = json_str.replace('___ESCAPED_QUOTE___', '\\"')
# Additional fixes for common JSON issues
# Fix unquoted string values
json_str = re.sub(r':\s*([a-zA-Z][a-zA-Z0-9\s]*?)(?=\s*[,}])', r': "\1"', json_str)
# Fix missing quotes around property names that might have been missed
json_str = re.sub(r'([{,])\s*([a-zA-Z_][a-zA-Z0-9_]*)\s*:', r'\1"\2":', json_str)
logger.info(f"Cleaned JSON string: {json_str[:200]}...") # Log first 200 chars after cleaning
try:
parsed_json = json.loads(json_str)
logger.info("JSON parsing successful after cleaning")
return parsed_json
except json.JSONDecodeError as e2:
logger.error(f"JSON parsing still failed after cleaning: {str(e2)}")
logger.error(f"Problematic JSON: {json_str}")
# Try to create a fallback response
fallback_response = {
"categories": {
"grammar_punctuation": {
"analysis": "Unable to parse detailed response. Basic grammar analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"vocabulary_usage": {
"analysis": "Unable to parse detailed response. Basic vocabulary analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"sentence_structure": {
"analysis": "Unable to parse detailed response. Basic structure analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"content_relevance": {
"analysis": "Unable to parse detailed response. Basic content analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"argument_development": {
"analysis": "Unable to parse detailed response. Basic argument analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"evidence_citations": {
"analysis": "Unable to parse detailed response. Basic evidence analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"structure_organization": {
"analysis": "Unable to parse detailed response. Basic organization analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
},
"conclusion_quality": {
"analysis": "Unable to parse detailed response. Basic conclusion analysis completed.",
"issues": [{"type": "parsing_error", "before": "JSON parsing failed", "after": "Please try again", "explanation": "Technical error in response parsing"}],
"positive_points": ["Essay submitted successfully"],
"suggestions": ["Please try submitting again"]
}
},
"essay_structure": {
"has_clear_introduction": {"value": True, "explanation": "Basic analysis completed"},
"has_structured_body": {"value": True, "explanation": "Basic analysis completed"},
"has_logical_conclusion": {"value": True, "explanation": "Basic analysis completed"},
"uses_transitions": {"value": True, "explanation": "Basic analysis completed"},
"maintains_tone": {"value": True, "explanation": "Basic analysis completed"}
},
"overall_feedback": "Technical error occurred during analysis. Please try submitting your essay again.",
"improvement_priorities": ["Try submitting again", "Check essay format", "Ensure proper text encoding"],
"error": "JSON parsing failed",
"original_error": str(e),
"cleaned_error": str(e2)
}
logger.warning("Returning fallback response due to JSON parsing failure")
return fallback_response
def grade_answer_with_gpt(self, student_answer, training_context):
logger.info(f"Processing full essay text: {self.count_tokens(student_answer)} tokens - NO TRUNCATION")
return self._grade_answer_legacy(student_answer, training_context)
def _grade_answer_legacy(self, student_answer, training_context):
original_text = student_answer
original_tokens = self.count_tokens(student_answer)
logger.info(f"Full essay token count: {original_tokens} - NO TRUNCATION")
student_answer, final_tokens, was_truncated = self.process_full_text(student_answer)
system_instructions = """
You are an expert English examiner specializing in CSS (Central Superior Services) essay evaluation. You MUST provide comprehensive feedback for EVERY aspect of the essay. Each feedback question/topic is MANDATORY.
EVALUATION CATEGORIES (ALL MANDATORY):
Grammar & Punctuation
Vocabulary Usage
Sentence Structure
Content Relevance & Depth
Argument Development
Evidence & Citations
Structure & Organization
Conclusion Quality
For each category, you MUST:
- SCAN THE ENTIRE ESSAY and identify EVERY instance where the writing does NOT meet CSS Essay standards for that category.
- For each issue, provide:
- before: the exact problematic sentence or phrase from the essay
- after: the improved or corrected version
- explanation: why it is an issue and how the correction improves it
- Return a COMPREHENSIVE LIST of ALL such issues found in the essay, not just a summary or a few examples.
- If no issues found, provide positive reinforcement with specific examples
- Focus on ISSUE DETECTION rather than scoring
VOCABULARY ANALYSIS REQUIREMENTS:
- Identify ALL problematic words (too simple, incorrect usage, misspellings)
- For each vocabulary issue, provide:
- before: the exact problematic word
- after: the corrected/improved word
- explanation: why the change is needed
- Suggest academic/sophisticated alternatives
- Check for repetitive word usage
ESSAY STRUCTURE ANALYSIS (ALL MANDATORY):
Evaluate each of these aspects with true/false and detailed explanations according to CSS Examiner standards:
1) Introduction & Thesis:
- Clear Thesis Statement: Is there a clear, well-defined thesis statement?
- Engaging Introduction: Does the introduction capture reader's attention?
- Background Context: Is there sufficient background context provided?
2) Body Development:
- Topic Sentences: Are there clear topic sentences for each paragraph?
- Supporting Evidence: Is each argument supported with evidence?
- Logical Flow: Do ideas flow logically from one to the next?
- Paragraph Coherence: Are paragraphs well-connected and coherent?
3) Content Quality:
- Relevance to Topic: Is all content relevant to the essay topic?
- Depth of Analysis: Does the essay provide deep, thorough analysis?
- Use of Examples: Are specific examples used to illustrate points?
- Critical Thinking: Does the essay demonstrate critical thinking?
4) Evidence & Citations:
- Factual Accuracy: Are all facts accurate and verifiable?
- Source Credibility: Are sources credible and authoritative?
- Proper Citations: Are sources properly cited?
- Statistical Data: Is statistical data used appropriately?
5) Conclusion:
- Summary of Arguments: Does the conclusion summarize main arguments?
- Policy Recommendations: Are policy recommendations provided?
- Future Implications: Are future implications discussed?
- Strong Closing: Does the essay have a strong, memorable closing?
TOPIC-SPECIFIC ANALYSIS:
Based on the essay topic, provide specialized feedback on:
- How well the essay addresses the specific question/topic
- Whether all aspects of the topic are covered
- If the essay demonstrates understanding of the topic's complexity
- Suggestions for better topic coverage
IMPORTANT REQUIREMENTS:
1. EVERY category MUST have feedback (no empty responses)
2. EVERY essay structure aspect MUST be evaluated
3. Provide specific examples from the essay
4. Give actionable improvement suggestions
5. Consider the CSS exam context and standards
6. Return ONLY valid JSON - no additional text
7. Ensure all feedback is constructive and educational
8. Use ONLY the exact JSON structure provided below
9. FOCUS ON FINDING AND DOCUMENTING ISSUES RATHER THAN SCORING
EXACT JSON FORMAT TO RETURN:
{
"categories": {
"grammar_punctuation": {
"analysis": "Detailed analysis of grammar and punctuation issues found in the essay",
"issues": [
{
"type": "grammar",
"before": "original text with error",
"after": "corrected text",
"explanation": "Explanation of the grammar rule violated"
},
{
"type": "grammar",
"before": "another error example",
"after": "corrected version",
"explanation": "Explanation for this correction"
}
],
"positive_points": ["Good point 1", "Good point 2"],
"suggestions": ["Suggestion 1", "Suggestion 2"]
},
"vocabulary_usage": {
"analysis": "Comprehensive analysis of vocabulary usage, word choice, and language sophistication",
"issues": [
{
"type": "vocabulary",
"before": "problematic_word",
"after": "improved_word",
"explanation": "Why this word needs improvement (too simple, incorrect usage, etc.)"
},
{
"type": "repetition",
"before": "repeated_word",
"after": "alternative_word",
"explanation": "Word is overused, suggest alternative"
}
],
"positive_points": ["Good vocabulary choices"],
"suggestions": ["Use more academic vocabulary", "Avoid repetition"]
},
"sentence_structure": {
"analysis": "Analysis of sentence variety, complexity, and structure. List ALL problematic sentences with before/after/explanation.",
"issues": [
{
"before": "This is a very long sentence it has no punctuation and is hard to read.",
"after": "This is a very long sentence. It has no punctuation and is hard to read.",
"explanation": "Split run-on sentence for clarity and punctuation."
},
{
"before": "He go to school every day.",
"after": "He goes to school every day.",
"explanation": "Subject-verb agreement error."
}
],
"positive_points": ["Good sentence variety"],
"suggestions": ["Vary sentence length", "Use complex sentences"]
},
"content_relevance": {
"analysis": "Analysis of how well content addresses the topic. List ALL irrelevant or off-topic content with before/after/explanation.",
"issues": [
{
"before": "The essay discusses unrelated historical events.",
"after": "Removed unrelated content.",
"explanation": "Content is not relevant to the essay topic."
},
{
"before": "Personal anecdotes not related to the topic.",
"after": "Removed personal anecdote.",
"explanation": "Personal stories are not relevant in a CSS essay unless directly related to the topic."
}
],
"positive_points": ["Content is relevant"],
"suggestions": ["Add more depth"]
},
"argument_development": {
"analysis": "Analysis of argument strength and logical flow. List ALL weak or missing arguments with before/after/explanation.",
"issues": [
{
"before": "The essay lacks a clear argument.",
"after": "Added a clear thesis statement and supporting arguments.",
"explanation": "CSS essays require a clear argument and logical development."
},
{
"before": "Arguments are not supported by evidence.",
"after": "Added supporting evidence for each argument.",
"explanation": "Arguments must be supported by evidence in a CSS essay."
}
],
"positive_points": ["Good arguments"],
"suggestions": ["Strengthen arguments"]
},
"evidence_citations": {
"analysis": "Analysis of evidence quality and citation usage. List ALL missing or weak evidence/citations with before/after/explanation.",
"issues": [
{
"before": "No sources are cited in the essay.",
"after": "Added citations for all factual claims.",
"explanation": "CSS essays require proper citation of evidence."
},
{
"before": "Uses vague evidence like 'many people say'.",
"after": "Replaced with specific, credible sources.",
"explanation": "Evidence must be specific and credible in a CSS essay."
}
],
"positive_points": ["Some evidence provided"],
"suggestions": ["Add more evidence"]
},
"structure_organization": {
"analysis": "Analysis of essay organization and structure. List ALL organizational issues with before/after/explanation.",
"issues": [
{
"before": "Paragraphs are not clearly separated.",
"after": "Added clear paragraph breaks.",
"explanation": "CSS essays require clear paragraph structure."
},
{
"before": "Ideas are presented in a random order.",
"after": "Reorganized ideas for logical flow.",
"explanation": "Ideas should be organized logically in a CSS essay."
}
],
"positive_points": ["Good organization"],
"suggestions": ["Improve transitions"]
},
"conclusion_quality": {
"analysis": "Analysis of conclusion effectiveness. List ALL issues with the conclusion with before/after/explanation.",
"issues": [
{
"before": "The essay ends abruptly without a conclusion.",
"after": "Added a clear, summarizing conclusion.",
"explanation": "CSS essays require a strong conclusion."
},
{
"before": "Conclusion repeats the introduction without adding value.",
"after": "Rewrote conclusion to synthesize main points and provide closure.",
"explanation": "Conclusion should synthesize, not repeat."
}
],
"positive_points": ["Good conclusion"],
"suggestions": ["Strengthen conclusion"]
}
},
"essay_structure": {
"Introduction & Thesis": {
"Clear Thesis Statement": {"value": true, "explanation": "Clear thesis statement present"},
"Engaging Introduction": {"value": true, "explanation": "Introduction captures reader's attention"},
"Background Context": {"value": true, "explanation": "Sufficient background context provided"}
},
"Body Development": {
"Topic Sentences": {"value": true, "explanation": "Clear topic sentences for each paragraph"},
"Supporting Evidence": {"value": true, "explanation": "Arguments supported with evidence"},
"Logical Flow": {"value": true, "explanation": "Ideas flow logically from one to the next"},
"Paragraph Coherence": {"value": true, "explanation": "Paragraphs well-connected and coherent"}
},
"Content Quality": {
"Relevance to Topic": {"value": true, "explanation": "All content relevant to essay topic"},
"Depth of Analysis": {"value": true, "explanation": "Essay provides deep, thorough analysis"},
"Use of Examples": {"value": true, "explanation": "Specific examples used to illustrate points"},
"Critical Thinking": {"value": true, "explanation": "Essay demonstrates critical thinking"}
},
"Evidence & Citations": {
"Factual Accuracy": {"value": true, "explanation": "All facts accurate and verifiable"},
"Source Credibility": {"value": true, "explanation": "Sources credible and authoritative"},
"Proper Citations": {"value": true, "explanation": "Sources properly cited"},
"Statistical Data": {"value": true, "explanation": "Statistical data used appropriately"}
},
"Conclusion": {
"Summary of Arguments": {"value": true, "explanation": "Conclusion summarizes main arguments"},
"Policy Recommendations": {"value": true, "explanation": "Policy recommendations provided"},
"Future Implications": {"value": true, "explanation": "Future implications discussed"},
"Strong Closing": {"value": true, "explanation": "Essay has strong, memorable closing"}
}
},
"overall_feedback": "Comprehensive overall feedback summarizing all aspects",
"improvement_priorities": ["Priority 1", "Priority 2", "Priority 3"]
}
"""
messages = [
{"role": "system", "content": system_instructions},
{"role": "user", "content": f"Student's Essay:\n\n{student_answer}"}
]
try:
response = self.client.chat.completions.create(
model="gpt-4.1",
messages=messages,
max_tokens=8000,
temperature=0,
)
feedback_raw = response.choices[0].message.content
feedback_dict = self.extract_json_from_text(feedback_raw)
# Transform to app format for compatibility
transformed_feedback = self.transform_feedback_to_app_format(feedback_dict)
return transformed_feedback
except Exception as e:
logger.error(f"Error in grade_answer_with_gpt: {str(e)}")
raise RuntimeError(f"Failed to grade answer using GPT: {str(e)}")
def grade_answer_with_question(self, student_answer, question):
logger.info(f"Processing full essay text for question: {self.count_tokens(student_answer)} tokens - NO TRUNCATION")
return self._grade_answer_with_question_legacy(student_answer, question)
def _grade_answer_with_question_legacy(self, student_answer, question):
original_text = student_answer
original_tokens = self.count_tokens(student_answer)
logger.info(f"Full essay token count: {original_tokens} - NO TRUNCATION")
student_answer, final_tokens, was_truncated = self.process_full_text(student_answer)
system_instructions = f"""
You are an expert English examiner specializing in CSS (Central Superior Services) essay evaluation.
You are evaluating an essay based on the specific question: '{question}'
EVALUATION CATEGORIES (ALL MANDATORY):
Grammar & Punctuation
Vocabulary Usage
Sentence Structure
Content Relevance & Depth
Argument Development
Evidence & Citations
Structure & Organization
Conclusion Quality
QUESTION-SPECIFIC ANALYSIS (MOST IMPORTANT):
Evaluate how well the essay addresses the question: '{question}'
- Does the essay directly answer the question?
- Are all aspects of the question covered?
- Is the response relevant and focused?
- Does the essay demonstrate understanding of the question's complexity?
For each category, you MUST:
- Provide a detailed analysis (minimum 2-3 sentences)
- List ALL issues found with specific examples
- For each issue, provide:
- before: the original text
- after: the corrected or improved text
- explanation: why the change is needed
- If no issues found, provide positive reinforcement with specific examples
- Focus on ISSUE DETECTION rather than scoring
VOCABULARY ANALYSIS REQUIREMENTS:
- Identify ALL problematic words (too simple, incorrect usage, misspellings)
- For each vocabulary issue, provide:
- before: the exact problematic word
- after: the corrected/improved word
- explanation: why the change is needed
- Suggest academic/sophisticated alternatives
- Check for repetitive word usage
ESSAY STRUCTURE ANALYSIS (ALL MANDATORY):
Evaluate each of these aspects with true/false and detailed explanations according to CSS Examiner standards:
1) Introduction & Thesis:
- Clear Thesis Statement: Is there a clear, well-defined thesis statement?
- Engaging Introduction: Does the introduction capture reader's attention?
- Background Context: Is there sufficient background context provided?
2) Body Development:
- Topic Sentences: Are there clear topic sentences for each paragraph?
- Supporting Evidence: Is each argument supported with evidence?
- Logical Flow: Do ideas flow logically from one to the next?
- Paragraph Coherence: Are paragraphs well-connected and coherent?
3) Content Quality:
- Relevance to Topic: Is all content relevant to the essay topic?
- Depth of Analysis: Does the essay provide deep, thorough analysis?
- Use of Examples: Are specific examples used to illustrate points?
- Critical Thinking: Does the essay demonstrate critical thinking?
4) Evidence & Citations:
- Factual Accuracy: Are all facts accurate and verifiable?
- Source Credibility: Are sources credible and authoritative?
- Proper Citations: Are sources properly cited?
- Statistical Data: Is statistical data used appropriately?
5) Conclusion:
- Summary of Arguments: Does the conclusion summarize main arguments?
- Policy Recommendations: Are policy recommendations provided?
- Future Implications: Are future implications discussed?
- Strong Closing: Does the essay have a strong, memorable closing?
QUESTION-SPECIFIC FEEDBACK:
Provide specialized feedback on how well the essay addresses the question: '{question}'
- Specific aspects of the question covered
- Missing aspects that should be addressed
- Suggestions for better question coverage
IMPORTANT REQUIREMENTS:
1. EVERY category MUST have feedback (no empty responses)
2. EVERY essay structure aspect MUST be evaluated
3. Provide specific examples from the essay
4. Give actionable improvement suggestions
5. Consider the CSS exam context and standards
6. Return ONLY valid JSON - no additional text
7. Ensure all feedback is constructive and educational
8. Focus heavily on how well the essay answers the specific question: '{question}'
9. Use ONLY the exact JSON structure provided below
10. FOCUS ON FINDING AND DOCUMENTING ISSUES RATHER THAN SCORING
EXACT JSON FORMAT TO RETURN:
{{
"categories": {{
"grammar_punctuation": {{
"analysis": "Detailed analysis of grammar and punctuation issues found in the essay",
"issues": [
{{
"type": "grammar",
"before": "original text with error",
"after": "corrected text",
"explanation": "Explanation of the grammar rule violated"
}}
],
"positive_points": ["Good point 1", "Good point 2"],
"suggestions": ["Suggestion 1", "Suggestion 2"]
}},
"vocabulary_usage": {{
"analysis": "Comprehensive analysis of vocabulary usage, word choice, and language sophistication",
"issues": [
{{
"type": "vocabulary",
"before": "problematic_word",
"after": "improved_word",
"explanation": "Why this word needs improvement (too simple, incorrect usage, etc.)"
}},
{{
"type": "repetition",
"before": "repeated_word",
"after": "alternative_word",
"explanation": "Word is overused, suggest alternative"
}}
],
"positive_points": ["Good vocabulary choices"],
"suggestions": ["Use more academic vocabulary", "Avoid repetition"]
}},
"sentence_structure": {{
"analysis": "Analysis of sentence variety, complexity, and structure",
"issues": [
{{
"type": "structure",
"before": "problematic sentence",
"after": "improved sentence",
"explanation": "Why this sentence structure needs improvement"
}}
],
"positive_points": ["Good sentence variety"],
"suggestions": ["Vary sentence length", "Use complex sentences"]
}},
"content_relevance": {{
"analysis": "Analysis of how well content addresses the topic",
"issues": [],
"positive_points": ["Content is relevant"],
"suggestions": ["Add more depth"]
}},
"argument_development": {{
"analysis": "Analysis of argument strength and logical flow",
"issues": [],
"positive_points": ["Good arguments"],
"suggestions": ["Strengthen arguments"]
}},
"evidence_citations": {{
"analysis": "Analysis of evidence quality and citation usage",
"issues": [],
"positive_points": ["Some evidence provided"],
"suggestions": ["Add more evidence"]
}},
"structure_organization": {{
"analysis": "Analysis of essay organization and structure",
"issues": [],
"positive_points": ["Good organization"],
"suggestions": ["Improve transitions"]
}},
"conclusion_quality": {{
"analysis": "Analysis of conclusion effectiveness",
"issues": [],
"positive_points": ["Good conclusion"],
"suggestions": ["Strengthen conclusion"]
}}
}},
"essay_structure": {{
"Introduction & Thesis": {{
"Clear Thesis Statement": {{"value": true, "explanation": "Clear thesis statement present"}},
"Engaging Introduction": {{"value": true, "explanation": "Introduction captures reader's attention"}},
"Background Context": {{"value": true, "explanation": "Sufficient background context provided"}}
}},
"Body Development": {{
"Topic Sentences": {{"value": true, "explanation": "Clear topic sentences for each paragraph"}},
"Supporting Evidence": {{"value": true, "explanation": "Arguments supported with evidence"}},
"Logical Flow": {{"value": true, "explanation": "Ideas flow logically from one to the next"}},
"Paragraph Coherence": {{"value": true, "explanation": "Paragraphs well-connected and coherent"}}
}},
"Content Quality": {{
"Relevance to Topic": {{"value": true, "explanation": "All content relevant to essay topic"}},
"Depth of Analysis": {{"value": true, "explanation": "Essay provides deep, thorough analysis"}},
"Use of Examples": {{"value": true, "explanation": "Specific examples used to illustrate points"}},
"Critical Thinking": {{"value": true, "explanation": "Essay demonstrates critical thinking"}}
}},
"Evidence & Citations": {{
"Factual Accuracy": {{"value": true, "explanation": "All facts accurate and verifiable"}},
"Source Credibility": {{"value": true, "explanation": "Sources credible and authoritative"}},
"Proper Citations": {{"value": true, "explanation": "Sources properly cited"}},
"Statistical Data": {{"value": true, "explanation": "Statistical data used appropriately"}}
}},
"Conclusion": {{
"Summary of Arguments": {{"value": true, "explanation": "Conclusion summarizes main arguments"}},
"Policy Recommendations": {{"value": true, "explanation": "Policy recommendations provided"}},
"Future Implications": {{"value": true, "explanation": "Future implications discussed"}},
"Strong Closing": {{"value": true, "explanation": "Essay has strong, memorable closing"}}
}}
}},
"overall_feedback": "Comprehensive overall feedback summarizing all aspects",
"improvement_priorities": ["Priority 1", "Priority 2", "Priority 3"],
"question_specific_feedback": {{
"question": "{question}",
"question_coverage": "Analysis of how well the essay addresses the specific question",
"covered_aspects": ["Aspect 1", "Aspect 2"],
"missing_aspects": ["Missing aspect 1", "Missing aspect 2"],
"strengths": ["Strength 1", "Strength 2"],
"improvement_suggestions": ["Suggestion 1", "Suggestion 2"]
}}
}}
"""
messages = [
{"role": "system", "content": system_instructions},
{"role": "user", "content": f"Question: {question}\n\nStudent's Essay:\n\n{student_answer}"}
]
try:
response = self.client.chat.completions.create(
model="gpt-4.1",
messages=messages,
max_tokens=8000,
temperature=0,
)
feedback_raw = response.choices[0].message.content
feedback_dict = self.extract_json_from_text(feedback_raw)
# Transform to app format for compatibility
transformed_feedback = self.transform_feedback_to_app_format(feedback_dict)
return transformed_feedback
except Exception as e:
logger.error(f"Error in grade_answer_with_question: {str(e)}")
raise RuntimeError(f"Failed to grade answer using GPT: {str(e)}")
def analyze_grammar_only(self, text: str) -> Dict[str, Any]:
logger.info("Starting grammar-only analysis")
if not text.strip():
return {'line_by_line_grammar': [], 'overall_grammar_summary': {'error': 'No text provided'}}
text = self.process_full_text(text)[0]
lines = text.split('\n')
all_line_grammar = []
for line_index, line in enumerate(lines):
if not line.strip():
all_line_grammar.append({
'line_number': line_index + 1,
'line_content': line,
'line_type': 'empty',
'grammar_score': 100,
'grammar_issues': [],
'positive_points': ['Proper line spacing'],
'suggestions': []
})
continue
try:
line_grammar = self._analyze_line_grammar_only(line, line_index + 1)
all_line_grammar.append(line_grammar)
except Exception as e:
logger.error(f"Error analyzing line {line_index + 1} for grammar: {str(e)}")
all_line_grammar.append({
'line_number': line_index + 1,
'line_content': line,
'line_type': 'error',
'grammar_score': 0,
'grammar_issues': [{'type': 'processing_error', 'description': str(e)}],
'positive_points': [],
'suggestions': ['Please review this line manually']
})
return {'line_by_line_grammar': all_line_grammar}
def _analyze_line_grammar_only(self, line: str, line_number: int) -> Dict[str, Any]:
system_prompt = f"""You are an expert English grammar examiner. Analyze this single line of text for GRAMMAR AND PUNCTUATION issues ONLY.\n\n...\nReturn JSON format:\n{{ ... }}"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Line {line_number}: {line}"}
]
try:
response = self.client.chat.completions.create(
model="gpt-4.1",
messages=messages,
max_tokens=8000,
temperature=0.3,
)
feedback_raw = response.choices[0].message.content
feedback_dict = self.extract_json_from_text(feedback_raw)
feedback_dict['line_number'] = line_number
feedback_dict['line_content'] = line
return feedback_dict
except Exception as e:
logger.error(f"Error in grammar-only line analysis: {str(e)}")
return {
'line_number': line_number,
'line_content': line,
'line_type': 'error',
'grammar_score': 0,
'grammar_issues': [{'type': 'processing_error', 'description': str(e)}],
'positive_points': [],
'suggestions': ['Please review this line manually']
}
def transform_feedback_to_app_format(self, feedback_dict):
"""
Transform the detailed feedback format to the format expected by the app.
This ensures compatibility with existing API responses and focuses on showing issues.
"""
try:
# Check if we have the new detailed format
if "categories" in feedback_dict:
# Transform from new detailed format to app format
evaluation_and_scoring = []
# Map category names to app format
category_mapping = {
"grammar_punctuation": "Grammar & Punctuation",
"vocabulary_usage": "Vocabulary Usage",
"sentence_structure": "Sentence Structure",
"content_relevance": "Content Relevance & Depth",
"argument_development": "Argument Development",
"evidence_citations": "Evidence & Citations",
"structure_organization": "Structure & Organization",
"conclusion_quality": "Conclusion Quality"
}
for category_key, category_name in category_mapping.items():
if category_key in feedback_dict["categories"]:
category_data = feedback_dict["categories"][category_key]
# Transform issues to app format with detailed information
issues_list = []
for issue in category_data.get("issues", []):
issue_info = {
"before": issue.get("before", ""),
"after": issue.get("after", ""),
"explanation": issue.get("explanation", "")
}
issues_list.append(issue_info)
# Create the evaluation and scoring entry (focus on issues, not scores)
evaluation_and_scoring.append({
"label": category_name,
"analysis": category_data.get("analysis", f"{category_name} analysis completed"),
"issuesCount": len(issues_list),
"issuesList": issues_list,
"positivePoints": category_data.get("positive_points", [])
})
# Transform essay structure to match the desired format with new CSS Examiner criteria
essay_structure = []
if "essay_structure" in feedback_dict:
structure_data = feedback_dict["essay_structure"]
# Introduction & Thesis section
intro_features = []
if 'Introduction & Thesis' in structure_data:
intro_data = structure_data['Introduction & Thesis']
for key, value in intro_data.items():
is_correct = value.get('value', True)
explanation = value.get('explanation', '')
error_message = f"Missing: {key.lower()}. {explanation}" if not is_correct else None
intro_features.append({
"label": key,
"isCorrect": is_correct,
"errorMessage": error_message
})
essay_structure.append({
"label": "Introduction & Thesis",
"features": intro_features
})
# Body Development section
body_features = []
if 'Body Development' in structure_data:
body_data = structure_data['Body Development']
for key, value in body_data.items():
is_correct = value.get('value', True)
explanation = value.get('explanation', '')
error_message = f"Missing: {key.lower()}. {explanation}" if not is_correct else None
body_features.append({
"label": key,
"isCorrect": is_correct,
"errorMessage": error_message
})
essay_structure.append({
"label": "Body Development",
"features": body_features
})
# Content Quality section
content_features = []
if 'Content Quality' in structure_data:
content_data = structure_data['Content Quality']
for key, value in content_data.items():
is_correct = value.get('value', True)
explanation = value.get('explanation', '')
error_message = f"Missing: {key.lower()}. {explanation}" if not is_correct else None
content_features.append({
"label": key,
"isCorrect": is_correct,
"errorMessage": error_message
})
essay_structure.append({
"label": "Content Quality",
"features": content_features
})
# Evidence & Citations section
evidence_features = []
if 'Evidence & Citations' in structure_data:
evidence_data = structure_data['Evidence & Citations']
for key, value in evidence_data.items():
is_correct = value.get('value', True)
explanation = value.get('explanation', '')
error_message = f"Missing: {key.lower()}. {explanation}" if not is_correct else None
evidence_features.append({
"label": key,
"isCorrect": is_correct,
"errorMessage": error_message
})
essay_structure.append({
"label": "Evidence & Citations",
"features": evidence_features
})
# Conclusion section
conclusion_features = []
if 'Conclusion' in structure_data:
conclusion_data = structure_data['Conclusion']
for key, value in conclusion_data.items():
is_correct = value.get('value', True)
explanation = value.get('explanation', '')
error_message = f"Missing: {key.lower()}. {explanation}" if not is_correct else None
conclusion_features.append({
"label": key,
"isCorrect": is_correct,
"errorMessage": error_message
})
essay_structure.append({
"label": "Conclusion",
"features": conclusion_features
})
# Create the transformed response with focus on issues
transformed_response = {
"evaluationAndScoring": evaluation_and_scoring,
"essayStructure": essay_structure,
"overall_feedback": feedback_dict.get("overall_feedback", "Comprehensive analysis completed"),
"improvement_priorities": feedback_dict.get("improvement_priorities", []),
"total_issues_found": sum(len(section.get("issuesList", [])) for section in evaluation_and_scoring),
"vocabulary_issues": [
issue for section in evaluation_and_scoring
if section["label"] == "Vocabulary Usage"
for issue in section.get("issuesList", [])
],
"grammar_issues": [
issue for section in evaluation_and_scoring
if section["label"] == "Grammar & Punctuation"
for issue in section.get("issuesList", [])
]
}
# Add question-specific feedback if present
if "question_specific_feedback" in feedback_dict:
transformed_response["question_specific_feedback"] = feedback_dict["question_specific_feedback"]
return transformed_response
else:
# Already in app format, return as is
return feedback_dict
except Exception as e:
logger.error(f"Error transforming feedback format: {str(e)}")
# Return fallback format
return {
"evaluationAndScoring": [
{
"label": "Grammar & Punctuation",
"analysis": "Basic analysis completed",
"issuesCount": 0,
"issuesList": [],
"positivePoints": ["Essay submitted successfully"]
}
],
"essayStructure": [
{
"label": "Introduction & Thesis",
"features": [
{
"label": "Clear Thesis Statement",
"isCorrect": False,
"errorMessage": "Missing: clear thesis statement. The essay lacks a clear, well-defined thesis statement that guides the reader."
}
]
}
],
"overall_feedback": "Analysis completed with basic feedback",
"improvement_priorities": ["Try submitting again"]
}
def rephrase_text_with_gpt(self, essay_text: str, system_prompt: str = None) -> dict:
"""
Rephrase and correct the essay to meet CSS (Central Superior Services) standards.
Provides comprehensive corrections for grammar, structure, style, and content.
"""
if system_prompt is None:
system_prompt = """You are an expert CSS (Central Superior Services) essay examiner and editor. Your task is to provide the BEST VERSION of the given essay by making comprehensive improvements while maintaining the original meaning and intent.
IMPORTANT REQUIREMENTS:
1. CORRECT ALL GRAMMAR AND PUNCTUATION ERRORS
2. IMPROVE SENTENCE STRUCTURE AND FLOW
3. ENHANCE VOCABULARY USAGE WITH APPROPRIATE ACADEMIC LANGUAGE
4. STRENGTHEN ARGUMENT DEVELOPMENT AND LOGICAL FLOW
5. IMPROVE ESSAY STRUCTURE (Introduction, Body, Conclusion)
6. ADD TRANSITIONAL PHRASES FOR BETTER COHERENCE
7. ENSURE PROPER PARAGRAPH ORGANIZATION
8. MAINTAIN CSS EXAM STANDARDS AND EXPECTATIONS
9. KEEP THE ORIGINAL MEANING AND ARGUMENTS INTACT
10. USE FORMAL ACADEMIC TONE APPROPRIATE FOR CSS EXAMS
CORRECTION GUIDELINES:
- Fix all grammatical errors (subject-verb agreement, tense consistency, etc.)
- Correct punctuation (commas, semicolons, apostrophes, etc.)
- Improve sentence variety and complexity
- Enhance vocabulary with sophisticated academic terms
- Strengthen topic sentences and supporting evidence
- Add logical transitions between paragraphs
- Ensure clear thesis statement and conclusion
- Maintain professional tone throughout
- Follow CSS essay format and style requirements
Return ONLY the corrected essay text - no explanations, no markdown formatting, just the improved essay ready for CSS examination."""
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Please provide the BEST VERSION of this CSS essay with all corrections applied:\n\n{essay_text}"}
]
# Calculate appropriate max_tokens based on input length
input_tokens = self.count_tokens(essay_text)
# Allow for 2x the input length plus extra for corrections
max_tokens_needed = min(input_tokens * 2 + 2000, 16000) # Cap at 16k tokens
response = self.client.chat.completions.create(
model="gpt-4.1",
messages=messages,
max_tokens=max_tokens_needed, # Dynamic token limit
temperature=0.3, # Lower temperature for more consistent corrections
)
rephrased_text = response.choices[0].message.content.strip()
# Clean up any potential formatting artifacts
rephrased_text = rephrased_text.replace('```', '').replace('**', '').replace('*', '')
rephrased_text = rephrased_text.strip()
# Verify that we didn't lose significant content
original_words = len(essay_text.split())
rephrased_words = len(rephrased_text.split())
if rephrased_words < original_words * 0.7: # If we lost more than 30% of content
logger.warning(f"Significant content loss detected: {original_words} -> {rephrased_words} words")
# Return original text with a note
return {
"rephrased_text": essay_text,
"error": f"Content loss detected ({original_words} -> {rephrased_words} words). Returning original text.",
"warning": "Rephrasing may have truncated content"
}
logger.info(f"Rephrasing successful: {original_words} -> {rephrased_words} words")
return {"rephrased_text": rephrased_text, "error": None}
except Exception as e:
logger.error(f"Error in rephrasing essay: {str(e)}")
return {"rephrased_text": essay_text, "error": str(e)}