daqc's picture
Upload 36 files
52b089b verified
raw
history blame
3.99 kB
import base64
import json
import mimetypes
import os
import uuid
from io import BytesIO
from typing import Optional
import requests
from dotenv import load_dotenv
from PIL import Image
from smolagents import Tool, tool
load_dotenv(override=True)
def encode_image(image_path):
if image_path.startswith("http"):
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
request_kwargs = {
"headers": {"User-Agent": user_agent},
"stream": True,
}
# Send a HTTP request to the URL
response = requests.get(image_path, **request_kwargs)
response.raise_for_status()
content_type = response.headers.get("content-type", "")
extension = mimetypes.guess_extension(content_type)
if extension is None:
extension = ".download"
fname = str(uuid.uuid4()) + extension
download_path = os.path.abspath(os.path.join("downloads", fname))
with open(download_path, "wb") as fh:
for chunk in response.iter_content(chunk_size=512):
fh.write(chunk)
image_path = download_path
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def resize_image(image_path):
img = Image.open(image_path)
width, height = img.size
img = img.resize((int(width / 2), int(height / 2)))
new_image_path = f"resized_{image_path}"
img.save(new_image_path)
return new_image_path
@tool
def visualizer(image_path: str, question: Optional[str] = None) -> str:
"""A tool that can answer questions about attached images.
Args:
image_path: The path to the image on which to answer the question. This should be a local path to downloaded image.
question: The question to answer.
"""
if not isinstance(image_path, str):
raise Exception("You should provide at least `image_path` string argument to this tool!")
add_note = False
if not question:
add_note = True
question = "Please write a detailed caption for this image."
mime_type, _ = mimetypes.guess_type(image_path)
base64_image = encode_image(image_path)
# Configuración para Ollama
model_id = os.getenv("MODEL_ID", "qwen2.5-coder:3b")
api_base = os.getenv("OPENAI_API_BASE", "http://localhost:11434/v1")
api_key = os.getenv("OPENAI_API_KEY", "ollama")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": model_id,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}},
],
}
],
"max_tokens": 1000,
}
try:
response = requests.post(f"{api_base}/chat/completions", headers=headers, json=payload)
response.raise_for_status()
output = response.json()["choices"][0]["message"]["content"]
except Exception as e:
print(f"Error processing image: {str(e)}")
if "Payload Too Large" in str(e):
new_image_path = resize_image(image_path)
base64_image = encode_image(new_image_path)
payload["messages"][0]["content"][1]["image_url"]["url"] = f"data:{mime_type};base64,{base64_image}"
response = requests.post(f"{api_base}/chat/completions", headers=headers, json=payload)
response.raise_for_status()
output = response.json()["choices"][0]["message"]["content"]
else:
raise Exception(f"Error processing image: {str(e)}")
if add_note:
output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}"
return output