import re import transformers from PIL import Image from transformers import DonutProcessor, VisionEncoderDecoderModel import torch import random import numpy as np import gradio as gr access_token = "" transformers.logging.disable_default_handler() processor = DonutProcessor.from_pretrained("daquarti/donut-base-sroie", use_auth_token=access_token) model = VisionEncoderDecoderModel.from_pretrained("daquarti/donut-base-sroie", use_auth_token=access_token) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def load_image (f): with Image.open(f) as img: a = img.load() return img.convert('RGB') def pred (a): #imagen_path = imagen #a = load_image (imagen_path) pixel_values = processor(a, return_tensors="pt").pixel_values task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) prediction = processor.batch_decode(outputs.sequences)[0] prediction = processor.token2json(prediction) return str (prediction) examples = ['1.jpg', '2.jpg'] demo = gr.Interface(fn=pred, inputs="image", outputs= "text", examples= examples) demo.launch(share= False)