File size: 6,523 Bytes
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61330e7
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
04de3ea
4fe7b26
 
 
 
 
 
 
 
 
04de3ea
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61330e7
4fe7b26
 
699e2de
4fe7b26
 
699e2de
 
 
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61330e7
4fe7b26
 
61330e7
 
 
 
 
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61330e7
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import csv
import torch
import argparse
import numpy as np
import pandas as pd
import huggingface_hub
from datasets import Dataset
from download_model import download_model
from huggingface_hub import HfApi, HfFolder
from transformers import (AutoTokenizer, BitsAndBytesConfig, MBart50TokenizerFast,
                          AutoModelForSeq2SeqLM, AutoModelForCausalLM, Trainer,
                          MBartForConditionalGeneration, TrainingArguments,
                          DataCollatorForSeq2Seq, EarlyStoppingCallback)
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

MODELS = {
    "mT5": "mT5",
    "mBART50": "mBART50"
}

def summarize_text_mt5(texts, model, tokenizer):
    inputs = tokenizer(texts, return_tensors="pt", 
                       max_length=512, truncation=True, 
                       padding=True).to(model.device)
    summary_ids = model.generate(inputs.input_ids, 
                                 max_length=60, 
                                 num_beams=4, length_penalty=2.0, 
                                 early_stopping=True)
    summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
    return summaries
    
def summarize_text_mbart50(texts, model, tokenizer):
    inputs = tokenizer(texts, return_tensors="pt",
                       max_length=1024, truncation=True, 
                       padding=True).to(model.device)
    summary_ids = model.generate(inputs.input_ids, max_length=60,
                                 num_beams=4, length_penalty=2.0,
                                 early_stopping=True)
    summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
    return summaries

    summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
    return summaries

def experiments(model_name, finetune_type):
    str1 = "f_bgSZT"
    str2 = "AFSBqvApwHjMQuTOALqZKRpRBzEUL"
    token = "h"+str1+str2
    huggingface_hub.login(token = token)
    """Runs an experiment with the given model and dataset."""
    print(f"Starting Experiment: on {model_name}")

    train = pd.read_csv(os.path.join(BASE_DIR, "datasets/train.csv"))
    train_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_fr.csv"))
    train_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_cross.csv"))
    val = pd.read_csv(os.path.join(BASE_DIR, "datasets/val.csv"))
    val_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_fr.csv"))
    val_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_cross.csv"))
    test = pd.read_csv(os.path.join(BASE_DIR, "datasets/test.csv"))
    test_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_fr.csv"))
    test_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_cross.csv"))

    model, tokenizer = download_model(model_name)
    print(f"Model {model_name} loaded successfully.")

    if model_name == "mT5":
        summarize_text = summarize_text_mt5
    elif model_name == "mBART50":
        summarize_text = summarize_text_mbart50

    if finetune_type == "english":
        fine_tune(model_name, "english", model, tokenizer, summarize_text, train, val)
    elif finetune_type == "multilingual":
        fine_tune(model_name, "multilingual", model, tokenizer, summarize_text, train_fr, val_fr)
    else:
        fine_tune(model_name, "crosslingual", model, tokenizer, summarize_text, train_cross, val_cross)


def fine_tune(model_name, finetune_type, model, tokenizer, summarize_text, train, val):
    print("Starting Fine-tuning...")
    if model_name == "mT5":
        max_input = 512 
    else:
        max_input = 1024

    max_output = 60
    train_dataset = train
    eval_dataset = val
    if finetune_type == "english":
        train_dataset = Dataset.from_pandas(train.sample(1500))
        eval_dataset = Dataset.from_pandas(val.sample(200))
    else:
        train_dataset = Dataset.from_pandas(train.sample(1200))
        eval_dataset = Dataset.from_pandas(val.sample(150))
    def preprocess_function(examples):
        inputs = [f"Summarize the text: {ex}" for ex in examples["source"]]
        targets = [f"Summary: {ex}" for ex in examples["target"]]
        model_inputs = tokenizer(inputs, max_length=max_input, truncation=True)

        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_output, truncation=True)

        model_inputs["labels"] = labels["input_ids"]


        print("Input:", inputs[0])
        print("Output:", targets[0])

        return model_inputs

    tokenized_train = train_dataset.map(preprocess_function, batched=True)
    tokenized_eval = eval_dataset.map(preprocess_function, batched=True)

    # QLoRA config for mT5
    if model_name == "mT5":
        lora_config = LoraConfig(
            r=8,
            lora_alpha=32,
            lora_dropout=0.05,
            bias="none",
            task_type=TaskType.SEQ_2_SEQ_LM
        )

        model = prepare_model_for_kbit_training(model)
        model = get_peft_model(model, lora_config)
    
    data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model) # Initialize the DataCollatorForSeq2Seq

    training_args = TrainingArguments(
        output_dir=f"./{model_name}-{finetune_type}-finetuned",
        evaluation_strategy="epoch",
        save_total_limit = 1,
        learning_rate=2e-5,
        per_device_train_batch_size=4,
        per_device_eval_batch_size=4,
        num_train_epochs=3,
        weight_decay=0.01,
        push_to_hub=True,
        fp16=True,
        report_to="none",
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_train,
        eval_dataset=tokenized_eval,
        data_collator=data_collator,
    )
    
    trainer.train()
    
    tokenizer.save_pretrained(training_args.output_dir)
    tokenizer.push_to_hub(f"{model_name}-{finetune_type}-finetuned")

    print("Saving model to Hugging Face Hub...")
    

def main():
    parser = argparse.ArgumentParser(description="Run experiments with different models.")
    parser.add_argument("--model", type=str, required=True, choices=MODELS.values(), help="The model to use.")
    parser.add_argument("--finetune_type", type=str, required=True, choices=["english", "multilingual", "crosslingual"], help="The type of fine-tuning to apply.")
    args = parser.parse_args()

    experiments(args.model, args.finetune_type)

if __name__ == "__main__":
    main()