File size: 9,321 Bytes
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1bf97
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64c7578
4fe7b26
 
 
 
 
 
 
 
 
64c7578
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1bf97
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1bf97
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1bf97
4fe7b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import csv
import torch
import argparse
import numpy as np
import pandas as pd
import huggingface_hub
from datasets import Dataset
from load_finetuned import load_model
from metrics import compute_scores, save_scores
from transformers import (AutoTokenizer, BitsAndBytesConfig, MBart50TokenizerFast,
                          AutoModelForSeq2SeqLM, AutoModelForCausalLM, Trainer,
                          MBartForConditionalGeneration, TrainingArguments,
                          DataCollatorForSeq2Seq)
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

MODELS = {
    "mT5": "mT5",
    "mBART50": "mBART50"
}
LANGUAGE_CODES = {
    "English": "en_XX",
    "French": "fr_XX"
}
EXPERIMENTS = {
    "mT5": ["zero-shot"],
    "mBART50": ["zero-shot", "1-shot"]
}

def summarize_text_mt5(texts, model, tokenizer):
    inputs = tokenizer(texts, return_tensors="pt", 
                       max_length=512, truncation=True, 
                       padding=True).to(model.device)
    summary_ids = model.generate(input_ids = inputs.input_ids, 
                                 max_length=60, 
                                 num_beams=4, length_penalty=2.0, 
                                 early_stopping=True)
    summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
    return summaries
    
def summarize_text_mbart50(texts, model, tokenizer):
    inputs = tokenizer(texts, return_tensors="pt",
                       max_length=1024, truncation=True, 
                       padding=True).to(model.device)
    summary_ids = model.generate(inputs.input_ids, max_length=60,
                                 num_beams=4, length_penalty=2.0,
                                 early_stopping=True)
    summaries = tokenizer.batch_decode(summary_ids, skip_special_tokens=True)
    return summaries

def experiments(model_name, experiment_type, num_examples, finetune_type):
    """Runs an experiment with the given model and dataset."""
    print(f"Starting Experiment: on {model_name}")

    # Construct dataset paths dynamically
    train = pd.read_csv(os.path.join(BASE_DIR, "datasets/train.csv"))
    train_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_fr.csv"))
    train_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/train_cross.csv"))
    val = pd.read_csv(os.path.join(BASE_DIR, "datasets/val.csv"))
    val_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_fr.csv"))
    val_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/val_cross.csv"))
    test = pd.read_csv(os.path.join(BASE_DIR, "datasets/test.csv"))
    test_fr = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_fr.csv"))
    test_cross = pd.read_csv(os.path.join(BASE_DIR, "datasets/test_cross.csv"))

    test = test.sample(num_examples) if num_examples else test
    test_fr = test_fr.sample(num_examples) if num_examples else test_fr
    test_cross = test_cross.sample(num_examples) if num_examples else test_cross

    model, tokenizer = load_model(model_name, finetune_type)
    print(f"Model {model_name} loaded successfully.")

    if model_name == "mT5":
        summarize_text = summarize_text_mt5
    elif model_name == "mBART50":
        summarize_text = summarize_text_mbart50

    if experiment_type == "zero-shot":
        run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, test_cross)
    elif experiment_type == "1-shot":
        run_1_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross)
    elif experiment_type == "2-shot":
        run_2_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross)
    else:
        raise ValueError("Invalid experiment type.")

def run_zero_shot(model_name, model, tokenizer, summarize_text, test, test_fr, test_cross, batch_size=16):
    print("Running Zero-Shot Evaluation...")
    
    for dataset, name in [(test, "English"), (test_fr, "French"), (test_cross, "Cross-lingual")]:
        if model_name == "mBART50":
            if name == "English":
                tokenizer.src_lang = "en_XX"
            else:
                tokenizer.src_lang = "fr_XX"
        prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
        texts = [f"{prefix}{row['source']}\n Summary: " for _, row in dataset.iterrows()]
        reference_summaries = dataset["target"].tolist()

        # Process in batches
        generated_summaries = []
        for i in range(0, len(texts), batch_size):
            batch_texts = texts[i:i + batch_size]
            print(f"Processing batch {i//batch_size + 1}")
            batch_summaries = summarize_text(batch_texts, model, tokenizer)
            generated_summaries.extend(batch_summaries)

        scores = compute_scores(generated_summaries, reference_summaries)
        save_scores(scores, model_name, "zero-shot", name)
        print(f"{name} Scores:", scores)


def run_1_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross, batch_size=16):
    print("Running 1-Shot Evaluation...")

    for dataset, train_data, name in [(test, train, "English"), (test_fr, train_fr, "French"), (test_cross, train_cross, "Cross-lingual")]:
        if model_name == "mBART50":
            if name == "English":
                tokenizer.src_lang = "en_XX"
            else:
                tokenizer.src_lang = "fr_XX"
        generated_summaries = []
        reference_summaries = []

        texts = []
        for _, sample in dataset.iterrows():
            one_shot = train_data.sample(1)
            source = one_shot["source"].iloc[0] 
            target = one_shot["target"].iloc[0]
            prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
            prompt = (
                f"{prefix}{source}\n Summary: {target}\n\n"
                f"{prefix}{sample['source']}\n Summary: "
            )
            texts.append(prompt)
            reference_summaries.append(sample["target"])

        # Process in batches
        for i in range(0, len(texts), batch_size):
            batch_texts = texts[i:i + batch_size]
            print(f"Processing batch {i//batch_size + 1}")
            batch_summaries = summarize_text(batch_texts, model, tokenizer)
            generated_summaries.extend(batch_summaries)

        scores = compute_scores(generated_summaries, reference_summaries)
        save_scores(scores, model_name, "1-shot", name)
        print(f"{name} Scores:", scores)

def run_2_shot(model_name, model, tokenizer, summarize_text, train, train_fr, train_cross, test, test_fr, test_cross, batch_size=16):
    print("Running 2-Shot Evaluation...")

    for dataset, train_data, name in [(test, train, "English"), (test_fr, train_fr, "French"), (test_cross, train_cross, "Cross-lingual")]:
        if model_name == "mBART50":
            if name == "English":
                tokenizer.src_lang = "en_XX"
            else:
                tokenizer.src_lang = "fr_XX"
        generated_summaries = []
        reference_summaries = []

        texts = []
        for _, sample in dataset.iterrows():
            two_shots = train_data.sample(2)
            two_shot1, two_shot2 = two_shots.iloc[0], two_shots.iloc[1]
            source1, source2 = two_shot1["source"].iloc[0] , two_shot2["source"].iloc[0] 
            target1, target2 = two_shot1["target"].iloc[0] , two_shot2["target"].iloc[0] 
            prefix = "Summarize in English: " if name == "Cross-lingual" else "Summarize the text: "
            prompt = (
                f"{prefix}{two_shot1['source']}\n Summary: {two_shot1['target']}\n\n"
                f"{prefix}{two_shot2['source']}\n Summary: {two_shot2['target']}\n\n"
                f"{prefix}{sample['source']}\n Summary: "
            )
            texts.append(prompt)
            reference_summaries.append(sample["target"])

        # Process in batches
        for i in range(0, len(texts), batch_size):
            batch_texts = texts[i:i + batch_size]
            batch_summaries = summarize_text(batch_texts, model, tokenizer)
            print(f"Processing batch {i//batch_size + 1}")
            generated_summaries.extend(batch_summaries)

        scores = compute_scores(generated_summaries, reference_summaries)
        save_scores(scores, model_name, "2-shot", name)
        print(f"{name} Scores:", scores)

        
def main():
    parser = argparse.ArgumentParser(description="Run experiments with different models.")
    parser.add_argument("--model", type=str, required=True, choices=MODELS.values(), help="The model to use.")
    parser.add_argument("--experiment", type=str, required=True, choices=sum(EXPERIMENTS.values(), []), help="The experiment to run.")
    parser.add_argument("--num_examples", type=int, default=None, help="Number of examples to generate summaries on (optional).")
    parser.add_argument("--finetune_type", type=str, required=True, choices=["english", "multilingual", "crosslingual"], help="The type of fine-tuning to apply.")
    args = parser.parse_args()

    experiments(args.model, args.experiment, args.num_examples, args.finetune_type)

if __name__ == "__main__":
    main()