Spaces:
No application file
No application file
import torch | |
from transformers import ( | |
AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig | |
) | |
from peft import PeftModel | |
def load_model(model_name, finetune_type): | |
"""Loads a fine-tuned model from the Hugging Face repository based on its type.""" | |
if model_name not in MODEL_REPOS: | |
raise ValueError(f"Invalid model name. Choose from: {list(MODEL_REPOS.keys())}") | |
if finetune_type not in MODEL_REPOS[model_name]: | |
raise ValueError(f"Invalid finetune type. Choose from: {list(MODEL_REPOS[model_name].keys())}") | |
repo_name = MODEL_REPOS[model_name][finetune_type] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(repo_name) | |
if model_name == "mT5": # 4-bit quantized + QLoRA fine-tuned | |
print(f"Loading {model_name} with {finetune_type} finetuning, 4-bit quantization, and QLoRA...") | |
# Load model with 4-bit quantization settings | |
quant_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
base_model_name = "google/mt5-xl" # Use correct base model | |
model = AutoModelForSeq2SeqLM.from_pretrained(base_model_name, quantization_config=quant_config, device_map="auto") | |
# Apply fine-tuned LoRA adapter | |
model = PeftModel.from_pretrained(model, repo_name) | |
elif model_name == "mBART50": # Normally fine-tuned | |
print(f"Loading {model_name} with {finetune_type} fine-tuning...") | |
model = AutoModelForSeq2SeqLM.from_pretrained(repo_name) | |
model.to(device) | |
else: | |
raise ValueError(f"Unknown model: {model_name}") | |
print(f"{model_name} ({finetune_type}) loaded successfully!") | |
return model, tokenizer | |
MODEL_REPOS = { | |
"mT5": { | |
"english": "darpanaswal/mT5-english-finetuned", | |
"multilingual": "darpanaswal/mT5-multilingual-finetuned", | |
"crosslingual": "darpanaswal/mT5-crosslingual-finetuned", | |
}, | |
"mBART50": { | |
"english": "darpanaswal/mBART50-english-finetuned", | |
"multilingual": "darpanaswal/mBART50-multilingual-finetuned", | |
"crosslingual": "darpanaswal/mBART50-crosslingual-finetuned", | |
}, | |
} |