HoNLP_Project / load_finetuned.py
darpanaswal's picture
Upload 7 files
4fe7b26 verified
import torch
from transformers import (
AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
)
from peft import PeftModel
def load_model(model_name, finetune_type):
"""Loads a fine-tuned model from the Hugging Face repository based on its type."""
if model_name not in MODEL_REPOS:
raise ValueError(f"Invalid model name. Choose from: {list(MODEL_REPOS.keys())}")
if finetune_type not in MODEL_REPOS[model_name]:
raise ValueError(f"Invalid finetune type. Choose from: {list(MODEL_REPOS[model_name].keys())}")
repo_name = MODEL_REPOS[model_name][finetune_type]
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(repo_name)
if model_name == "mT5": # 4-bit quantized + QLoRA fine-tuned
print(f"Loading {model_name} with {finetune_type} finetuning, 4-bit quantization, and QLoRA...")
# Load model with 4-bit quantization settings
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
base_model_name = "google/mt5-xl" # Use correct base model
model = AutoModelForSeq2SeqLM.from_pretrained(base_model_name, quantization_config=quant_config, device_map="auto")
# Apply fine-tuned LoRA adapter
model = PeftModel.from_pretrained(model, repo_name)
elif model_name == "mBART50": # Normally fine-tuned
print(f"Loading {model_name} with {finetune_type} fine-tuning...")
model = AutoModelForSeq2SeqLM.from_pretrained(repo_name)
model.to(device)
else:
raise ValueError(f"Unknown model: {model_name}")
print(f"{model_name} ({finetune_type}) loaded successfully!")
return model, tokenizer
MODEL_REPOS = {
"mT5": {
"english": "darpanaswal/mT5-english-finetuned",
"multilingual": "darpanaswal/mT5-multilingual-finetuned",
"crosslingual": "darpanaswal/mT5-crosslingual-finetuned",
},
"mBART50": {
"english": "darpanaswal/mBART50-english-finetuned",
"multilingual": "darpanaswal/mBART50-multilingual-finetuned",
"crosslingual": "darpanaswal/mBART50-crosslingual-finetuned",
},
}