import csv import numpy as np from rouge_score import rouge_scorer from bert_score import score as bert_score def compute_scores(predictions, references): scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True) scores = {"ROUGE-1": [], "ROUGE-2": [], "ROUGE-L": [], "BERT-F1": []} # Compute ROUGE scores for pred, ref in zip(predictions, references): rouge_scores = scorer.score(pred, ref) scores["ROUGE-1"].append(rouge_scores["rouge1"].fmeasure) scores["ROUGE-2"].append(rouge_scores["rouge2"].fmeasure) scores["ROUGE-L"].append(rouge_scores["rougeL"].fmeasure) # Compute BERTScore F1 P, R, F1 = bert_score(predictions, references, lang="en", rescale_with_baseline=True) scores["BERT-F1"].extend(F1.tolist()) return {key: np.mean(value) for key, value in scores.items()} def save_scores(scores, model_name, experiment_type, dataset_name): with open("rouge_results.csv", mode="a", newline="") as file: writer = csv.writer(file) writer.writerow([model_name, experiment_type, dataset_name, scores["ROUGE-1"], scores["ROUGE-2"], scores["ROUGE-L"], scores["BERT-F1"]])