File size: 36,718 Bytes
3215d8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import argparse
import os
import string
import numpy as np
import pandas as pd
import torch
from argparse import Namespace
from torch.utils.data import DataLoader
from trainer import Trainer, TrainerArgs
from TTS.config import load_config
from TTS.tts.configs.align_tts_config import AlignTTSConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.tts.configs.shared_configs import BaseAudioConfig, BaseDatasetConfig, CharactersConfig
from TTS.tts.configs.tacotron2_config import Tacotron2Config
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.models import setup_model
from TTS.tts.models.align_tts import AlignTTS
from TTS.tts.models.forward_tts import ForwardTTS, ForwardTTSArgs
from TTS.tts.models.glow_tts import GlowTTS
from TTS.tts.models.tacotron2 import Tacotron2
from TTS.tts.models.vits import Vits, VitsArgs
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_checkpoint
from tqdm.auto import tqdm
from utils import str2bool
def get_arg_parser():
parser = argparse.ArgumentParser(description='Traning and evaluation script for acoustic / e2e TTS model ')
# dataset parameters
parser.add_argument('--dataset_name', default='indictts', choices=['ljspeech', 'indictts', 'googletts'])
parser.add_argument('--language', default='ta', choices=['en', 'ta', 'te', 'kn', 'ml', 'hi', 'mr', 'bn', 'gu', 'or', 'as', 'raj', 'mni', 'brx', 'all'])
parser.add_argument('--dataset_path', default='/nlsasfs/home/ai4bharat/praveens/ttsteam/datasets/{}/{}', type=str) # dataset_name, language #CHANGE
parser.add_argument('--speaker', default='all') # eg. all, male, female, ...
parser.add_argument('--use_phonemes', default=False, type=str2bool)
parser.add_argument('--phoneme_language', default='en-us', choices=['en-us'])
parser.add_argument('--add_blank', default=False, type=str2bool)
parser.add_argument('--text_cleaner', default='multilingual_cleaners', choices=['multilingual_cleaners'])
parser.add_argument('--eval_split_size', default=0.01)
parser.add_argument('--min_audio_len', default=1)
parser.add_argument('--max_audio_len', default=float("inf")) # 20*22050
parser.add_argument('--min_text_len', default=1)
parser.add_argument('--max_text_len', default=float("inf")) # 400
parser.add_argument('--audio_config', default='without_norm', choices=['without_norm', 'with_norm'])
# model parameters
parser.add_argument('--model', default='glowtts', choices=['glowtts', 'vits', 'fastpitch', 'tacotron2', 'aligntts'])
parser.add_argument('--hidden_channels', default=512, type=int)
parser.add_argument('--use_speaker_embedding', default=True, type=str2bool)
parser.add_argument('--use_d_vector_file', default=False, type=str2bool)
parser.add_argument('--d_vector_file', default="", type=str)
parser.add_argument('--d_vector_dim', default=512, type=int)
parser.add_argument('--speaker_encoder_model_path', default='', type=str)
parser.add_argument('--speaker_encoder_config_path', default='', type=str)
parser.add_argument('--use_speaker_encoder_as_loss', default=False, type=str2bool) # only supported in vits, fastpitch
parser.add_argument('--use_ssim_loss', default=False, type=str2bool) # only supported in fastpitch
parser.add_argument('--vocoder_path', default=None, type=str) # external vocoder for speaker encoder loss in fastpitch
parser.add_argument('--vocoder_config_path', default=None, type=str) # external vocoder for speaker encoder loss in fastpitch
parser.add_argument('--use_style_encoder', default=False, type=str2bool)
parser.add_argument('--use_aligner', default=True, type=str2bool) # for fastspeech, fastpitch
parser.add_argument('--use_separate_optimizers', default=False, type=str2bool) # for aligner in fastspeech, fastpitch
parser.add_argument('--use_pre_computed_alignments', default=False, type=str2bool) # for fastspeech, fastpitch
parser.add_argument('--pretrained_checkpoint_path', default=None, type=str) # to load pretrained weights
parser.add_argument('--attention_mask_model_path', default='output/store/ta/fastpitch/best_model.pth', type=str) # set if use_aligner==False and use_pre_computed_alignments==False #CHANGE
parser.add_argument('--attention_mask_config_path', default='output/store/ta/fastpitch/config.json', type=str) # set if use_aligner==False and use_pre_computed_alignments==False #CHANGE
parser.add_argument('--attention_mask_meta_file_name', default='meta_file_attn_mask.txt', type=str) # dataset_name, language # set if use_aligner==False #CHANGE
# training parameters
parser.add_argument('--epochs', default=1000, type=int)
parser.add_argument('--aligner_epochs', default=1000, type=int) # For FastPitch
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--batch_size_eval', default=8, type=int)
parser.add_argument('--batch_group_size', default=0, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--num_workers_eval', default=8, type=int)
parser.add_argument('--mixed_precision', default=False, type=str2bool)
parser.add_argument('--compute_input_seq_cache', default=False, type=str2bool)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--lr_scheduler', default='NoamLR', choices=['NoamLR', 'StepLR', 'LinearLR', 'CyclicLR', 'NoamLRStepConstant', 'NoamLRStepDecay'])
parser.add_argument('--lr_scheduler_warmup_steps', default=4000, type=int) # NoamLR
parser.add_argument('--lr_scheduler_step_size', default=500, type=int) # StepLR
parser.add_argument('--lr_scheduler_threshold_step', default=500, type=int) # NoamLRStep+
parser.add_argument('--lr_scheduler_aligner', default='NoamLR', choices=['NoamLR', 'StepLR', 'LinearLR', 'CyclicLR', 'NoamLRStepConstant', 'NoamLRStepDecay'])
parser.add_argument('--lr_scheduler_gamma', default=0.1, type=float) # StepLR, LinearLR, CyclicLR
# training - logging parameters
parser.add_argument('--run_description', default='None', type=str)
parser.add_argument('--output_path', default='output', type=str)
parser.add_argument('--test_delay_epochs', default=0, type=int)
parser.add_argument('--print_step', default=100, type=int)
parser.add_argument('--plot_step', default=100, type=int)
parser.add_argument('--save_step', default=10000, type=int)
parser.add_argument('--save_n_checkpoints', default=1, type=int)
parser.add_argument('--save_best_after', default=10000, type=int)
parser.add_argument('--target_loss', default=None)
parser.add_argument('--print_eval', default=False, type=str2bool)
parser.add_argument('--run_eval', default=True, type=str2bool)
# distributed training parameters
parser.add_argument('--port', default=54321, type=int)
parser.add_argument('--continue_path', default="", type=str)
parser.add_argument('--restore_path', default="", type=str)
parser.add_argument('--group_id', default="", type=str)
parser.add_argument('--use_ddp', default=True, type=bool)
parser.add_argument('--rank', default=0, type=int)
#parser.add_argument('--gpus', default='0', type=str)
# vits
parser.add_argument('--use_sdp', default=True, type=str2bool)
return parser
def formatter_indictts(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs-22k", cols[0] + ".wav")
text = cols[1].strip()
speaker_name = cols[2].strip()
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def filter_speaker(samples, speaker):
if speaker == 'all':
return samples
samples = [sample for sample in samples if sample['speaker_name']==speaker]
return samples
def get_lang_chars(language):
if language == 'ta':
lang_chars_df = pd.read_csv('chars/Characters-Tamil.csv')
lang_chars = sorted(list(set(list("".join(lang_chars_df['Character'].values.tolist())))))
print(lang_chars, len(lang_chars))
print("".join(lang_chars))
lang_chars_extra = ['ௗ', 'ஹ', 'ஜ', 'ஸ', 'ஷ']
lang_chars_extra = sorted(list(set(list("".join(lang_chars_extra)))))
print(lang_chars_extra, len(lang_chars_extra))
print("".join(lang_chars_extra))
lang_chars = lang_chars + lang_chars_extra
elif language == 'hi':
lang_chars_df = pd.read_csv('chars/Characters-Hindi.csv')
lang_chars = sorted(list(set(list("".join(lang_chars_df['Character'].values.tolist())))))
print(lang_chars, len(lang_chars))
print("".join(lang_chars))
lang_chars_extra = []
lang_chars_extra = sorted(list(set(list("".join(lang_chars_extra)))))
print(lang_chars_extra, len(lang_chars_extra))
print("".join(lang_chars_extra))
lang_chars = lang_chars + lang_chars_extra
elif language == 'en':
lang_chars = string.ascii_lowercase
return lang_chars
def get_test_sentences(language):
if language == 'ta':
test_sentences = [
"நேஷனல் ஹெரால்ட் ஊழல் குற்றச்சாட்டு தொடர்பாக, காங்கிரஸ் நாடாளுமன்ற உறுப்பினர் ராகுல் காந்தியிடம், அமலாக்கத்துறை, திங்கள் கிழமையன்று பத்து மணி நேரத்திற்கும் மேலாக விசாரணை நடத்திய நிலையில், செவ்வாய்க்கிழமை மீண்டும் விசாரணைக்கு ஆஜராகிறார்.",
"ஒரு விஞ்ஞானி தம் ஆராய்ச்சிகளை எவ்வளவோ கணக்காகவும் முன் யோசனையின் பேரிலும் நுட்பமாகவும் நடத்துகிறார்.",
]
elif language == 'en':
test_sentences = [
"Brazilian police say a suspect has confessed to burying the bodies of missing British journalist Dom Phillips and indigenous expert Bruno Pereira.",
"Protests have erupted in India over a new reform scheme to hire soldiers for a fixed term for the armed forces",
]
elif language == 'mr':
test_sentences = [
"मविआ सरकार अल्पमतात आल्यानंतर अनेक निर्णय घेतले: मुख्यमंत्री एकनाथ शिंदे यांचा आरोप.",
"वर्ध्यात भदाडी नदीच्या पुलावर कार डिव्हायडरला धडकून भीषण अपघात, दोघे गंभीर जखमी.",
]
elif language == 'as':
test_sentences = [
"দেউতাই উইলত স্পষ্টকৈ সেইখিনি মোৰ নামত লিখি দি গৈছে",
"গতিকে শিক্ষাৰ বাবেও এনে এক পূৰ্ব প্ৰস্তুত পৰিৱেশ এটাত",
]
elif language == 'bn':
test_sentences = [
"লোডশেডিংয়ের কল্যাণে পুজোর দুসপ্তাহ আগে কেনাকাটার মাহেন্দ্রক্ষণে, দোকানে শোভা পাচ্ছে, মোমবাতি",
"এক চন্দরা নির্দোষ হইয়াও, আইনের আপাত নিশ্ছিদ্র জালে পড়িয়া প্রাণ দিয়াছিল",
]
elif language == 'brx':
test_sentences = [
"गावनि गोजाम गामि नवथिखौ हरखाब नागारनानै गोदान हादानाव गावखौ दिदोमै फसंथा फित्राय हाबाया जोबोद गोब्राब जायोलै गोमजोर",
"सानहाबदों आं मोथे मोथो",
]
elif language == 'gu':
test_sentences = [
"ઓગણીસો છત્રીસ માં, પ્રથમવાર, એક્રેલીક સેફટી ગ્લાસનું, ઉત્પાદન, શરુ થઈ ગયું.",
"વ્યાયામ પછી પ્રોટીન લેવાથી, સ્નાયુની જે પેશીયોને હાનિ પ્હોંચી હોય છે.",
]
elif language == 'hi':
test_sentences = [
"बिहार, राजस्थान और उत्तर प्रदेश से लेकर हरियाणा, मध्य प्रदेश एवं उत्तराखंड में सेना में भर्ती से जुड़ी 'अग्निपथ स्कीम' का विरोध जारी है.",
"संयुक्त अरब अमीरात यानी यूएई ने बुधवार को एक फ़ैसला लिया कि अगले चार महीनों तक वो भारत से ख़रीदा हुआ गेहूँ को किसी और को नहीं बेचेगा.",
]
elif language == 'kn':
test_sentences = [
"ಯಾವುದು ನಿಜ ಯಾವುದು ಸುಳ್ಳು ಎನ್ನುವ ಬಗ್ಗೆ ಚಿಂತಿಸಿ.",
"ಶಕ್ತಿ ಇದ್ದರೆನ್ನೊಡನೆ ಜಗಳಕ್ಕೆ ಬಾ",
]
elif language == 'ml':
test_sentences = [
"ശിലായുഗകാലം മുതൽ മനുഷ്യർ ജ്യാമിതീയ രൂപങ്ങൾ ഉപയോഗിച്ചുവരുന്നു",
"വാഹനാപകടത്തിൽ പരുക്കേറ്റ അധ്യാപിക മരിച്ചു",
]
elif language == 'mni':
test_sentences = [
"মথং মথং, অসুম কাখিবনা.",
"থেবনা ঙাশিংদু অমমম্তা ইল্লে.",
]
elif language == 'mr':
test_sentences = [
"म्हणुनच महाराच बिरुद मी मानान वागवल",
"घोडयावरून खाली उतरताना घोडेस्वार वृध्दाला म्हणाला, बाबा एवढया कडाक्याच्या थंडीत नदी कडेला तुम्ही किती वेळ बसला होतात.",
]
elif language == 'or':
test_sentences = [
"ସାମାନ୍ୟ ଗୋଟିଏ ବାଳକ, ସେ କ’ଣ ମହାଭାରତ ଯୁଦ୍ଧରେ ଲଢ଼ିବ ",
"ଏ ଘଟଣା ଦେଖିବାକୁ ଶହ ଶହ ଲୋକ ଧାଇଁଲେ ",
]
elif language == 'raj':
test_sentences = [
"कन्हैयालाल सेठिया इत्याद अनुपम काव्य कृतियां है, इंया ई, प्रकति काव्य री दीठ सूं, बादळी, लू",
"नई बीनणियां रो घूंघटो नाक रे ऊपर ऊपर पड़यो सावे है",
]
elif language == 'te':
test_sentences = [
"సింహం అడ్డువచ్చి, తప్పుకో శిక్ష విధించవలసింది నేను అని కోతిని అఙ్ఞాపించింది నక్కకేసి తిరిగి మంత్రి పుంగవా ఈ మూషికాధముడు చోరుడు అని నీకు ఎలా తెలిసింది అని అడిగింది.",
"ఈ మాటలు వింటూనే గాలవుడు, కువలయాశ్వాన్ని ఎక్కి, శత్రుజిత్తువద్దకు వెళ్లి, ఋతుధ్వజుణ్ణి పంపమని కోరాడు, ఋతుధ్వజుడు, కువలయాశ్వాన్ని ఎక్కి, గాలవుడి వెంట, ఆయన ఆశ్రమానికి వెళ్ళాడు.",
]
elif language == 'all':
test_sentences = [
"ஒரு விஞ்ஞானி தம் ஆராய்ச்சிகளை எவ்வளவோ கணக்காகவும் முன் யோசனையின் பேரிலும் நுட்பமாகவும் நடத்துகிறார்.",
"ఇక బిన్ లాడెన్ తర్వాతి అగ్ర నాయకులు అయ్మన్ అల్ జవహరి తదితర ముఖ్యుల 'తలలు నరికి ఈటెలకు గుచ్చండి' అనేవి ఇతర ఆదేశాలు.",
"ಕೆಲ ದಿನಗಳಿಂದ ಮಳೆ ಕಡಿಮೆಯಾದಂತೆ ತೋರಿದ್ದರೂ ಕಳೆದ ಎರಡು ದಿನಗಳಲ್ಲಿ ರಾಜ್ಯದ ಹಲವೆಡೆ ಮತ್ತೆ ಮಳೆ ಸುರಿದಿದ್ದು ಇದರ ಪರಿಣಾಮದಿಂದಾಗಿ ಮತ್ತೆ ನೀರಿನ ಹರಿವು ಏರುವ ಪಥದಲ್ಲಿದೆ.",
"കോമണ്വെല്ത്ത് ഗെയിംസ് വനിതാ ക്രിക്കറ്റ് സെമി ഫൈനലില് ഇംഗ്ലണ്ടിനെ ആവേശപ്പോരില് വീഴ്ത്തി ഇന്ത്യ ഫൈനലിലെത്തി."
]
else:
raise ValueError("test_sentences are not defined")
return test_sentences
def compute_attention_masks(model_path, config_path, meta_save_path, data_path, dataset_metafile, args, use_cuda=True):
dataset_name = args.dataset_name
language = args.language
batch_size = 16
meta_save_path = meta_save_path.format(dataset_name, language)
C = load_config(config_path)
ap = AudioProcessor(**C.audio)
# load the model
model = setup_model(C)
model, _ = load_checkpoint(model, model_path, use_cuda, True)
# data loader
dataset_config = BaseDatasetConfig(
name=dataset_name,
meta_file_train=dataset_metafile,
path=data_path,
language=language
)
samples, _ = load_tts_samples(
dataset_config,
eval_split=False,
formatter=formatter_indictts
)
dataset = TTSDataset(
outputs_per_step=model.decoder.r if "r" in vars(model.decoder) else 1,
compute_linear_spec=False,
ap=ap,
samples=samples,
tokenizer=model.tokenizer,
phoneme_cache_path=C.phoneme_cache_path,
)
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=4,
collate_fn=dataset.collate_fn,
shuffle=False,
drop_last=False,
)
# compute attentions
file_paths = []
with torch.no_grad():
for data in tqdm(loader):
# setup input data
text_input = data["token_id"]
text_lengths = data["token_id_lengths"]
#linear_input = data[3]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
#stop_targets = data[6]
item_idxs = data["item_idxs"]
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda()
text_lengths = text_lengths.cuda()
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
if C.model == 'glowtts':
model_outputs = model.forward(text_input, text_lengths, mel_input, mel_lengths)
#model_outputs = model.inference(text_input, text_lengths, mel_input, mel_lengths)
elif C.model == 'fast_pitch':
model_outputs = model.inference2(text_input, text_lengths)
else:
raise ValueError
alignments = model_outputs["alignments"].detach()
for idx, alignment in enumerate(alignments):
item_idx = item_idxs[idx]
# interpolate if r > 1
alignment = (
torch.nn.functional.interpolate(
alignment.transpose(0, 1).unsqueeze(0),
size=None,
scale_factor=model.decoder.r if "r" in vars(model.decoder) else 1,
mode="nearest",
align_corners=None,
recompute_scale_factor=None,
)
.squeeze(0)
.transpose(0, 1)
)
# remove paddings
alignment = alignment[: mel_lengths[idx], : text_lengths[idx]].cpu().numpy()
# set file paths
wav_file_name = os.path.basename(item_idx)
align_file_name = os.path.splitext(wav_file_name)[0] + "_attn.npy"
file_path = item_idx.replace(wav_file_name, align_file_name)
# save output
wav_file_abs_path = os.path.abspath(item_idx)
file_abs_path = os.path.abspath(file_path)
file_paths.append([wav_file_abs_path, file_abs_path])
np.save(file_path, alignment)
# output metafile
with open(meta_save_path, "w", encoding="utf-8") as f:
for p in file_paths:
f.write(f"{p[0]}|{p[1]}\n")
print(f" >> Metafile created: {meta_save_path}")
return True
def main(args):
if args.speaker == 'all':
meta_file_train="metadata_train.csv"
meta_file_val="metadata_test.csv"
else:
meta_file_train=f"metadata_train_{args.speaker}.csv"
meta_file_val=f"metadata_test_{args.speaker}.csv"
# set dataset config
dataset_config = BaseDatasetConfig(
name=args.dataset_name,
meta_file_train=meta_file_train,
meta_file_val=meta_file_val,
path=args.dataset_path.format(args.dataset_name, args.language),
language=args.language
)
#lang_chars = get_lang_chars(args.language)
samples, _ = load_tts_samples(
dataset_config,
eval_split=False,
formatter=formatter_indictts)
samples = filter_speaker(samples, args.speaker)
texts = "".join(item["text"] for item in samples)
lang_chars = sorted(list(set(texts)))
print(lang_chars, len(lang_chars))
del samples, texts
# set audio config
audio_config = BaseAudioConfig(
trim_db=60.0, # default: 45
#mel_fmin=0.0, # default: 0
mel_fmax=8000, # default: None
log_func="np.log", # default: np.log10
spec_gain=1.0, # default: 20
signal_norm=False, # default: True
)
audio_configs = {
"without_norm": BaseAudioConfig(
trim_db=60.0, # default: 45
#mel_fmin=0.0, # default: 0
mel_fmax=8000, # default: None
log_func="np.log", # default: np.log10
spec_gain=1.0, # default: 20
signal_norm=False, # default: True
),
"with_norm": BaseAudioConfig(
trim_db=60.0, # default: 45
#mel_fmin=0.0, # default: 0
mel_fmax=8000, # default: None
log_func="np.log10", # default: np.log10
spec_gain=20, # default: 20
signal_norm=True, # default: True
),
}
audio_config = audio_configs[args.audio_config]
# set characters config
characters_config = CharactersConfig(
characters_class="TTS.tts.models.vits.VitsCharacters",
pad="<PAD>",
eos="<EOS>",
bos="<BOS>",
blank="<BLNK>",
#characters="!¡'(),-.:;¿?$%&‘’‚“`”„" + "".join(lang_chars),
characters="".join(lang_chars),
punctuations="!¡'(),-.:;¿? ",
phonemes=None
)
if args.lr_scheduler == 'NoamLR':
lr_scheduler_params = {
"warmup_steps": args.lr_scheduler_warmup_steps
}
elif args.lr_scheduler == 'StepLR':
lr_scheduler_params = {
"step_size": args.lr_scheduler_step_size,
"gamma": args.lr_scheduler_gamma
}
elif args.lr_scheduler == 'LinearLR':
lr_scheduler_params = {
"start_factor": args.lr_scheduler_gamma,
"total_iters": args.lr_scheduler_warmup_steps
}
elif args.lr_scheduler == 'CyclicLR':
lr_scheduler_params = {
"base_lr": args.lr * args.lr_scheduler_gamma,
"max_lr": args.lr,
"cycle_momentum": False
}
elif args.lr_scheduler in ['NoamLRStepConstant', 'NoamLRStepDecay'] :
lr_scheduler_params = {
"warmup_steps": args.lr_scheduler_warmup_steps,
"threshold_step": args.lr_scheduler_threshold_step
}
else:
raise NotImplementedError()
if args.lr_scheduler_aligner == 'NoamLR':
lr_scheduler_aligner_params = {
"warmup_steps": args.lr_scheduler_warmup_steps
}
elif args.lr_scheduler_aligner == 'StepLR':
lr_scheduler_aligner_params = {
"step_size": args.lr_scheduler_step_size
}
elif args.lr_scheduler_aligner in ['NoamLRStepConstant', 'NoamLRStepDecay'] :
lr_scheduler_aligner_params = {
"warmup_steps": args.lr_scheduler_warmup_steps,
"threshold_step": args.lr_scheduler_threshold_step
}
else:
raise NotImplementedError()
# set base tts config
base_tts_config = Namespace(
# input representation
audio=audio_config,
use_phonemes=args.use_phonemes,
phoneme_language=args.phoneme_language,
compute_input_seq_cache=args.compute_input_seq_cache,
text_cleaner=args.text_cleaner,
phoneme_cache_path=os.path.join(args.output_path, "phoneme_cache"),
characters=characters_config,
add_blank=args.add_blank,
# dataset
datasets=[dataset_config],
min_audio_len=args.min_audio_len,
max_audio_len=args.max_audio_len,
min_text_len=args.min_text_len,
max_text_len=args.max_text_len,
# data loading
num_loader_workers=args.num_workers,
num_eval_loader_workers=args.num_workers_eval,
# model
use_d_vector_file=args.use_d_vector_file,
d_vector_file=args.d_vector_file,
d_vector_dim=args.d_vector_dim,
# trainer - run
output_path=args.output_path,
project_name='indic-tts-acoustic',
run_name=f'{args.language}_{args.model}_{args.dataset_name}_{args.speaker}_{args.run_description}',
run_description=args.run_description,
# trainer - loggging
print_step=args.print_step,
plot_step=args.plot_step,
dashboard_logger='wandb',
wandb_entity='indic-asr',
# trainer - checkpointing
save_step=args.save_step,
save_n_checkpoints=args.save_n_checkpoints,
save_best_after=args.save_best_after,
# trainer - eval
print_eval=args.print_eval,
run_eval=args.run_eval,
# trainer - test
test_delay_epochs=args.test_delay_epochs,
# trainer - distibuted training
distributed_url=f'tcp://localhost:{args.port}',
# trainer - training
mixed_precision=args.mixed_precision,
epochs=args.epochs,
batch_size=args.batch_size,
eval_batch_size=args.batch_size_eval,
batch_group_size=args.batch_group_size,
lr=args.lr,
lr_scheduler=args.lr_scheduler,
lr_scheduler_params = lr_scheduler_params,
# test
#test_sentences_file=f'test_sentences/{args.language}.txt',
test_sentences=get_test_sentences(args.language),
eval_split_size=args.eval_split_size,
)
base_tts_config = vars(base_tts_config)
# set model config
if args.model == 'glowtts':
config = GlowTTSConfig(
**base_tts_config,
use_speaker_embedding=args.use_speaker_embedding,
)
elif args.model == "vits":
vitsArgs = VitsArgs(
use_speaker_embedding=args.use_speaker_embedding,
use_sdp=args.use_sdp,
use_speaker_encoder_as_loss=args.use_speaker_encoder_as_loss,
speaker_encoder_config_path=args.speaker_encoder_config_path,
speaker_encoder_model_path=args.speaker_encoder_model_path,
)
config = VitsConfig(
**base_tts_config,
model_args=vitsArgs,
use_speaker_embedding=args.use_speaker_embedding,
)
elif args.model == "fastpitch":
if args.use_speaker_encoder_as_loss:
return_wav = True
compute_linear_spec = True
assert args.vocoder_path is not None
assert args.vocoder_config_path is not None
else:
return_wav = False
compute_linear_spec = False
args.vocoder_path = None
args.vocoder_config_path = None
config = FastPitchConfig(
**base_tts_config,
model_args = ForwardTTSArgs(
use_aligner=args.use_aligner,
use_separate_optimizers=args.use_separate_optimizers,
hidden_channels=args.hidden_channels,
use_speaker_encoder_as_loss=args.use_speaker_encoder_as_loss,
speaker_encoder_config_path=args.speaker_encoder_config_path,
speaker_encoder_model_path=args.speaker_encoder_model_path,
vocoder_path=args.vocoder_path,
vocoder_config_path=args.vocoder_config_path
),
use_speaker_embedding=args.use_speaker_embedding,
use_ssim_loss = args.use_ssim_loss,
compute_f0=True,
f0_cache_path=os.path.join(args.output_path, "f0_cache"),
sort_by_audio_len=True,
max_seq_len=500000,
return_wav= return_wav,
compute_linear_spec=compute_linear_spec,
aligner_epochs=args.aligner_epochs,
lr_scheduler_aligner=args.lr_scheduler_aligner,
lr_scheduler_aligner_params = lr_scheduler_aligner_params
)
if not config.model_args.use_aligner:
metafile = 'metadata.csv'
attention_mask_meta_save_path = f'{args.dataset_path}/{args.attention_mask_meta_file_name}'
if not args.use_pre_computed_alignments:
print("[START] Computing attention masks...")
compute_attention_masks(args.attention_mask_model_path, args.attention_mask_config_path, attention_mask_meta_save_path, args.dataset_path, metafile, args)
print("[END] Computing attention masks")
dataset_config.meta_file_attn_mask = attention_mask_meta_save_path
elif args.model == "tacotron2":
config = Tacotron2Config(
**base_tts_config,
use_speaker_embedding=args.use_speaker_embedding,
ga_alpha=0.0,
decoder_loss_alpha=0.25,
postnet_loss_alpha=0.25,
postnet_diff_spec_alpha=0,
decoder_diff_spec_alpha=0,
decoder_ssim_alpha=0,
postnet_ssim_alpha=0,
r=2,
attention_type="dynamic_convolution",
double_decoder_consistency=False,
)
elif args.model == "aligntts":
config = AlignTTSConfig(
**base_tts_config,
)
# set preprocessors
ap = AudioProcessor.init_from_config(config)
tokenizer, config = TTSTokenizer.init_from_config(config)
# load data
train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
#eval_split_size=config.eval_split_size,
formatter=formatter_indictts
)
train_samples = filter_speaker(train_samples, args.speaker)
eval_samples = filter_speaker(eval_samples, args.speaker)
print("Train Samples: ", len(train_samples))
print("Eval Samples: ", len(eval_samples))
# set speaker manager
if args.use_speaker_embedding:
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
elif args.use_d_vector_file:
speaker_manager = SpeakerManager(
d_vectors_file_path=args.d_vector_file,
encoder_model_path=args.speaker_encoder_model_path,
encoder_config_path=args.speaker_encoder_config_path,
use_cuda=True)
else:
speaker_manager = None
# load model
if args.model == 'glowtts':
model = GlowTTS(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'vits':
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'fastpitch':
model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'tacotron2':
model = Tacotron2(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'aligntts':
model = AlignTTS(config, ap, tokenizer, speaker_manager=speaker_manager)
if args.speaker == 'all':
config.num_speakers = speaker_manager.num_speakers
if hasattr(config, 'model_args') and hasattr(config.model_args, 'num_speakers'):
config.model_args.num_speakers = speaker_manager.num_speakers
else:
config.num_speakers = 1
if args.pretrained_checkpoint_path:
checkpoint_state = torch.load(args.pretrained_checkpoint_path)['model']
print(" > Partial model initialization...")
model_dict = model.state_dict()
for k, v in checkpoint_state.items():
if k not in model_dict:
print(" | > Layer missing in the model definition: {}".format(k))
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
# 2. filter out different size layers
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
# 3. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
missed_keys = set(model_dict.keys())-set(pretrained_dict.keys())
print(" | > Missed Keys:", missed_keys)
# set trainer
trainer = Trainer(
TrainerArgs(continue_path=args.continue_path, restore_path=args.restore_path, use_ddp=args.use_ddp, rank=args.rank, group_id=args.group_id),
config,
args.output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples
)
# run training
trainer.fit()
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = get_arg_parser()
args = parser.parse_args()
args.dataset_path = args.dataset_path.format(args.dataset_name ,args.language)
if args.use_style_encoder:
assert args.use_speaker_embedding
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
main(args)
|