File size: 6,421 Bytes
3215d8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import os
from ossaudiodev import SNDCTL_SEQ_RESETSAMPLES

from trainer import Trainer, TrainerArgs

from TTS.tts.configs.shared_configs import BaseAudioConfig
from TTS.utils.audio import AudioProcessor
from TTS.vocoder.configs import HifiganConfig
from TTS.vocoder.datasets.preprocess import load_wav_data
from TTS.vocoder.models.gan import GAN

from utils import str2bool


def formatter_indictts(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    txt_file = os.path.join(root_path, meta_file)
    items = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, "wavs-22k", cols[0] + ".wav")
            text = cols[1].strip()
            speaker_name = cols[2].strip()
            #items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
            items.append(wav_file)
    return items

def get_arg_parser():
    parser = argparse.ArgumentParser(description='Training and evaluation script for vocoder model ')

    # dataset parameters
    parser.add_argument('--dataset_name', default='indictts', choices=['ljspeech', 'indictts', 'googletts'])
    parser.add_argument('--language', default='ta', choices=['en', 'ta', 'te', 'kn', 'ml', 'hi', 'mr', 'bn', 'gu', 'or', 'as', 'raj', 'mni' 'all'])
    parser.add_argument('--dataset_path', default='../../datasets/{}/{}', type=str)   
    parser.add_argument('--speaker', default='all') # eg. all, female, male
    parser.add_argument('--eval_split_size', default=10, type=int)

    # model parameters
    parser.add_argument('--model', default='hifigan', choices=['hifigan'])
    parser.add_argument('--seq_len', default=8192, type=int)
    parser.add_argument('--pad_short', default=2000, type=int)
    parser.add_argument('--use_noise_augment', default=True, type=str2bool)

    # training parameters
    parser.add_argument('--epochs', default=1000, type=int)
    parser.add_argument('--batch_size', default=8, type=int)
    parser.add_argument('--batch_size_eval', default=8, type=int)
    parser.add_argument('--num_workers', default=8, type=int)
    parser.add_argument('--num_workers_eval', default=8, type=int)
    parser.add_argument('--lr_gen', default=0.0001, type=float)
    parser.add_argument('--lr_disc', default=0.0001, type=float)
    parser.add_argument('--mixed_precision', default=False, type=str2bool)

    # training - logging parameters 
    parser.add_argument('--run_description', default='None', type=str)
    parser.add_argument('--output_path', default='output_vocoder', type=str)
    parser.add_argument('--test_delay_epochs', default=0, type=int)
    parser.add_argument('--print_step', default=100, type=int)
    parser.add_argument('--plot_step', default=100, type=int)
    parser.add_argument('--save_step', default=10000, type=int)
    parser.add_argument('--save_n_checkpoints', default=1, type=int)
    parser.add_argument('--save_best_after', default=10000, type=int)
    parser.add_argument('--target_loss', default='loss_1')
    parser.add_argument('--print_eval', default=False, type=str2bool)
    parser.add_argument('--run_eval', default=True, type=str2bool)

    # distributed training parameters
    parser.add_argument('--port', default=54321, type=int)
    parser.add_argument('--continue_path', default="", type=str)
    parser.add_argument('--restore_path', default="", type=str)
    parser.add_argument('--group_id', default="", type=str)
    parser.add_argument('--use_ddp', default=True, type=bool)
    parser.add_argument('--rank', default=0, type=int)
    #parser.add_argument('--gpus', default='0', type=str)

    return parser
    

def main(args):

    config = HifiganConfig(
        audio=BaseAudioConfig(
            trim_db=60.0,
            mel_fmin=0.0,
            mel_fmax=8000,
            log_func="np.log",
            spec_gain=1.0,
            signal_norm=False,
        ),
        batch_size=args.batch_size,
        eval_batch_size=args.batch_size_eval,
        num_loader_workers=args.num_workers,
        num_eval_loader_workers=args.num_workers_eval,
        run_eval=args.run_eval,
        test_delay_epochs=args.test_delay_epochs,
        save_step=args.save_step,
        save_best_after=args.save_best_after,
        save_n_checkpoints=args.save_n_checkpoints,
        target_loss=args.target_loss,
        epochs=args.epochs,
        seq_len=args.seq_len,
        pad_short=args.pad_short,
        use_noise_augment=args.use_noise_augment,
        eval_split_size=args.eval_split_size,
        print_step=args.print_step,
        plot_step=args.plot_step,
        print_eval=args.print_eval,
        mixed_precision=args.mixed_precision,
        lr_gen=args.lr_gen,
        lr_disc=args.lr_disc,
        data_path=args.dataset_path.format(args.language),
        #output_path=f'{args.output_path}/{args.language}_{args.model}',
        output_path=args.output_path,
        distributed_url=f'tcp://localhost:{args.port}',
        dashboard_logger='wandb',
        project_name='vocoder',
        run_name=f'{args.language}_{args.model}_{args.speaker}',
        run_description=args.run_description,
        wandb_entity='gokulkarthik'
    )

    ap = AudioProcessor(**config.audio.to_dict())

    if args.speaker == 'all':
        meta_file_train="metadata_train.csv"
        meta_file_val="metadata_test.csv"
    else:
        meta_file_train=f"metadata_train_{args.speaker}.csv"
        meta_file_val=f"metadata_test_{args.speaker}.csv"
    train_samples = formatter_indictts(config.data_path, meta_file_train)
    eval_samples = formatter_indictts(config.data_path, meta_file_val)

    model = GAN(config, ap)

    trainer = Trainer(
        TrainerArgs(continue_path=args.continue_path, restore_path=args.restore_path, use_ddp=args.use_ddp, rank=args.rank, group_id=args.group_id), 
        config, 
        config.output_path, 
        model=model, 
        train_samples=train_samples, 
        eval_samples=eval_samples
    )
    trainer.fit()


if __name__ == '__main__':
    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'

    parser = get_arg_parser()
    args = parser.parse_args()

    args.dataset_path = args.dataset_path.format(args.dataset_name, args.language)
    #args.dataset_path += '/wavs-22k'

    if not os.path.exists(args.output_path):
        os.makedirs(args.output_path)

    main(args)